TAMING WILD EXTENSIONS WITH HOPF ALGEBRAS

LINDSAY N. CHILDS

ABSTRACT. Let $K \subset L$ be a Galois extension of number fields with abelian Galois group G and rings of integers $R \subset S$, and let \mathscr{A} be the order of S in KG. If \mathscr{A} is a Hopf R-algebra with operations induced from KG, then S is locally isomorphic to \mathscr{A} as \mathscr{A} -module. Criteria are found for \mathscr{A} to be a Hopf algebra when $K = \mathbb{Q}$ or when L/K is a Kummer extension of prime degree. In the latter case we also obtain a complete classification of orders over R in L which are tame or Galois H-extensions, H a Hopf order in KG, using a generalization of the discriminant.

Galois module theory seeks to describe the ring of integers S of a Galois extension $L \supset K$ of number fields with Galois group G as a G-module, either absolutely (i.e. over ZG) or relatively (i.e. over RG, R the ring of integers of K). In the relative case, the fundamental result is Noether's theorem: S is locally RG-isomorphic to RG, that is, S has a normal basis locally at each prime of R, if and only if L/K is tame, i.e. tamely ramified.

However, nontame extensions L/K abound (e.g. K = Q, $L = Q(\sqrt{m})$, m = 2 or 3 (mod 4), or $L = Q(\zeta)$, ζ a primitive *m*th root of unity, *m* not square-free). In attempting to extend the tame results to nontame extensions, one approach, introduced by H. W. Leopoldt [17] and studied by H. Jacobinski [15], F. Bertrandias, J.-P. Bertrandias and M. J. Ferton [2, 3, 4], A. M. Berge [1], and recently, M. Taylor [24, 28], is to replace RG by a larger order over R in KG, in particular, the order $\mathscr A$ of S in KG.

$$\mathscr{A} = \{ \alpha \in KG | \alpha S \subseteq S \},\$$

and consider S as an \mathscr{A} -module. For K=Q this approach was successful: $S\cong \mathscr{A}$ as \mathscr{A} -module when $G=\operatorname{Gal}(L/Q)$ is abelian. However, in [2 and 3] it is shown that $S\cong \mathscr{A}$ as \mathscr{A} -module may fail, even locally, if G is dihedral or if L/K is a Kummer extension of prime degree.

This paper starts from the premise that it is of interest to know when \mathscr{A} is a Hopf R-algebra with operations induced from those on the Hopf K-algebra KG (abusing language we henceforth call such an \mathscr{A} a Hopf subalgebra of KG). There are several reasons for investigating such a premise.

In general, as Bergman [29] has eloquently explained, for an algebra A to act on another algebra S and to respect the algebra structure of S, it is natural for A to be

Received by the editors April 11, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 11R33, 13B05, 16A24; Secondary 11S15.

at least a bialgebra. For to describe how A respects the unit map and the multiplication on S, it is necessary for A to act on R and on $S \otimes S$, and a natural way to define such actions is via maps $\varepsilon \colon A \to R$ and $\Delta \colon A \to A \otimes A$ which make A into a bialgebra. In applying this general observation to \mathscr{A} , to require that \mathscr{A} be a Hopf algebra, not just a bialgebra, is to require that \mathscr{A} be closed under the inverse map, or antipode, of KG.

Asking when \mathscr{A} is a Hopf algebra may be of intrinsic geometric interest. For if so, setting $Y = \operatorname{Spec}(S)$, $X = \operatorname{Spec}(R)$, then Y is acted upon by $A = \operatorname{Spec}(\mathscr{A}^*)$, the Cartier dual over X of the affine group scheme represented by \mathscr{A} , and A may be a more natural group scheme of operators on Y than is

$$G = \operatorname{Spec}((RG)^*).$$

Perhaps of most interest, however, is that fact that part of Noether's theorem may be recast as: if $\mathscr{A} = RG$, then locally $S \cong \mathscr{A}$ as \mathscr{A} -module; and in this formulation the result can be generalized, at least for G abelian, to the case where \mathscr{A} is an arbitrary Hopf subalgebra of KG. The proof of this, given in §4, is an almost immediate application of one of the main results in [9], which characterizes, for H cocommutative, the condition that there exist local normal bases for an object S of a Hopf R-algebra H in terms of a criterion for "tameness" which directly generalizes the criterion for tame ramification that the image of the trace map on S be all of R.

Thus in the wild case, when the order \mathscr{A} of S in KG, G abelian, is a Hopf subalgebra of KG, the wild RG-extension S becomes a tame \mathscr{A} -extension and has local normal basis at every prime of R. This result is a rare example of a general local normal basis criterion for wild extensions of arbitrary number fields K.

The main body of the paper is an investigation, for the simplest abelian extensions, cyclotomic extensions of Q and Kummer extensions of prime order, of conditions for which \mathcal{A} is a Hopf subalgebra of KG.

When K = Q, the example of $L = Q(\sqrt{m})$, $m \not\equiv 1 \pmod{4}$, for which $\mathscr{A} \cong (ZG)^*$, the dual of ZG, is almost the only possible example. In general, for K = Q, L an abelian extension of Q, \mathscr{A} is a Hopf subalgebra of QG if and only if every odd prime is tamely ramified, and the first ramification group of L/Q at the prime 2 has order at most 2. The main obstacle is that the idempotents occurring in \mathscr{A} which correspond to ramification groups of L/Q of order > 2 are not sent to $\mathscr{A} \otimes \mathscr{A}$ by the comultiplication on KG.

For Kummer extensions L/K of prime order l, we find several equivalent conditions for $\mathscr A$ to be a Hopf subalgebra of KG, involving a congruence condition on a Kummer generator of L, a condition on the ramification numbers of L/K at primes dividing l, and a trace condition. This latter condition is that $\mathscr A$ is Hopf if and only if $\operatorname{tr}(S)$ is the (l-1)th power of an ideal of R. The analysis of when $\mathscr A$ is a Hopf algebra utilizes Tate and Oort's classification of group schemes of order l over rings of integers; in particular, if $\mathscr A$ is a Hopf algebra, then $\mathscr A = H_{\mathscr B}$, the Hopf algebra corresponding to the ideal $\mathscr B$ with $\mathscr B \cdot \operatorname{tr}(S) = lR$.

The determination of when \mathscr{A} is a Hopf algebra is entirely a local question at completions of K, and is nontrivial only at primes p dividing l at which L/K is totally ramified and $\not\equiv (R_pG)^*$. Our approach in the prime order Kummer case is

to find all the Hopf subalgebras of \mathcal{A}_n , using the Tate-Oort theory, and then look for Galois extensions with respect to these Hopf algebras (an H-Galois extension S with $S^H = R$ is an H^* -Galois object in the sense of Chase and Sweedler [7]). We show that to each Hopf subalgebra of A there corresponds a unique Galois extension which is a suborder of $S \otimes_R R_p$ in $L \otimes K_p$, and then determine when $S \otimes R_p$ itself is such a Galois extension whose Hopf algebra is \mathscr{A} . To do this we develop a general codifferent criterion for an H-extension, H a Hopf algebra, to be Galois, based on the integral I of H, which yields a generalization of the classical discriminant criterion for H = RG, and also yields a Galois-theoretic proof of Larson and Sweedler's theorem that if H is a finite, unimodular Hopf algebra, then $H^* \cong H \otimes I$ as H-modules [16], and a proof of Pareigis' Frobenius criterion for Hopf algebras [19]. A by-product of the development is to give a complete local, then global classification of Hopf Galois extensions, and also tame H-extensions, which are orders over R in Kummer extensions of K of prime order. In particular, we show that there are orders over R in L which are Galois H-extensions for some H if and only if the Kummer order \tilde{S} is a Galois $(RG)^*$ -extension, in which case the Galois H-extensions are in 1-1 correspondence with ideals of R which are (l-1)th powers and contain $(lR)(tr(S))^{-1}$.

Throughout the paper, $L \supset K$ is a Galois extension of number fields, the Galois group Gal(L/K) = G, and O_K , O_L are the rings of integers of K, L, respectively.

1. Hopf algebras and their algebras. Hopf algebras (over a commutative ring R) as considered in this paper are in the sense of Sweedler [22], that is, H is a Hopf R-algebra if it is an R-bialgebra with antipode. A Hopf R-algebra H is finite if it is a finitely generated projective R-module [7, p. 55]. Throughout this paper, all Hopf algebras will be assumed finite. We denote the multiplication, unit, comultiplication, counit and antipode of H by μ , i, Δ , ε , and λ , respectively.

If H is a Hopf R-algebra, the space of (left) integrals I of H is the set

$$I = (x \in H | yx = \varepsilon(y)x \text{ for all } y \text{ in } H).$$

Let S be an R-algebra, finitely generated and projective as R-module, and H a Hopf algebra. Then S is an H-module algebra [22] if S is acted on by H via a measuring. If S is an H-module algebra, then the action $H \otimes S \to S$ induces a comodule map $\alpha: S \to S \otimes H^*$ which is an R-algebra homomorphism [7, p. 55]; S is then an H^* -object. Conversely, if S is an H-object, S is an H^* -module algebra.

If S is a H-module algebra, the fixed ring is

$$S^H = \{ s \in S | \xi s = \varepsilon(\xi) s \text{ for all } \xi \text{ in } H \}.$$

We have $IS \subseteq S^H$ for S any H-module algebra. We call S an H-extension of R if $S^H = R$ and S is an H-module algebra.

Let H, J be finite Hopf algebras which are dual: $H^* \cong J$, $J^* \cong H$, and S an R-algebra, finitely generated and projective as R-module, then S is a Galois H-extension of R if S is a Galois J-object in the sense of [7], and S is a tame H-extension of R if S is a tame J-object in the sense of [9]. We recall these definitions.

DEFINITION 1.1. The *R*-algebra *S* is a Galois *J*-object if *S* is a *J*-object via α : $S \to S \otimes J$, and the map γ : $S \otimes S \to S \otimes J$ given by $\gamma(x \otimes y) = (x \otimes 1)\alpha(y)$, is an isomorphism.

S is a tame J-object if S is an H-module algebra, $H = J^*$, faithful as H-module, rank $_R(S) = \operatorname{rank}_R(H)$ as projective R-modules, and for $I = \operatorname{the}$ space of integrals of H, $IS = S^H = R$.

A Galois J-object is a tame J-object, by [9, (2.3)]. An H-extension S of R has normal basis if $S \cong H^*$ as H-module, and has local normal basis if for any prime ideal p of R, $S_p \cong H_p^*$ as H_p -module.

Let $L\supset K$ be a Galois extension of number fields with Galois group G, abelian. Let H be a Hopf O_K -algebra which is an order over O_K in KG. If O_L is an H-extension of O_K , then the criteria for O_L to be a tame H-extension reduce to the single condition $IO_L = O_K$, the analogue for H of the condition, for $H = O_K G$, that the trace map: $O_L \to O_K$ be surjective [9]. Thus for abelian extensions of number fields, O_L is a tame $O_K G$ -extension if and only if L/K is tamely ramified.

The main theorem of [9] is that the *H*-extension $O_L \supset O_K$ has local normal basis if and only if $IO_L = O_K$, *I* the space of integrals of *H*. Thus determining that O_L is a tame *H*-extension of O_K for some Hopf algebra *H* yields useful information on the local structure of O_L .

2. The order of O_L . Let $L \supset K$ be an abelian Galois extension of number fields with Galois group G. Following Leopoldt [17], let

$$\mathscr{A} = \{ \alpha \in KG | \alpha O_L \subseteq O_L \},\$$

the order of O_L in KG, and set $\mathscr{A}^* = \operatorname{Hom}_{O_K}(\mathscr{A}, O_K)$. In [17], Leopoldt proved that if K = Q, O_L is always a free \mathscr{A} -module; on the other hand, F. and J. P. Bertrandias and M. Ferton [3, 4] have shown that O_L need not be locally free over \mathscr{A} for $L \supset K$ a Kummer extension of prime order.

One reason for interest in knowing if \mathcal{A} is a Hopf algebra is:

THEOREM 2.1. Let $L \supset K$ be an abelian extension of number fields with Galois group G. Suppose \mathscr{A} , the order of O_L in KG, is a Hopf subalgebra of KG. Then O_L is a tame \mathscr{A} -extension of O_K and is locally isomorphic to \mathscr{A} as \mathscr{A} -module.

PROOF. Suppose \mathscr{A} is a Hopf algebra. Let $R = O_K$, $S = O_L$. By [9, Theorem 5.4], O_L is locally isomorphic to \mathscr{A}^* as \mathscr{A} -module if and only if IS = R where I is the space of integrals of \mathscr{A} . Since \mathscr{A}^* is locally isomorphic to \mathscr{A} as \mathscr{A} -module if \mathscr{A} is a Hopf algebra (see e.g. [19] or Corollary 10.4 below), it suffices to show IS = R, a local question. So assume R is local. Let $\operatorname{tr} = \sum_{\sigma \in G} \sigma$, then if $\operatorname{tr}(S) = aR$ (R, being local, is a discrete valuation ring), $\theta = \operatorname{tr}/a$ maps S onto R. Thus $\theta \in \mathscr{A}$. Since \mathscr{A} is a Hopf subalgebra of KG and tr is an integral of KG, θ is an integral of \mathscr{A} . Thus IS = R.

3. Tate-Oort algebras. In most of this paper we study extensions of number fields $L \supset K$ which are cyclic of prime order l with Galois group G with generator σ , where K contains a primitive lth root of unity ζ . The Hopf algebras which arise are

finitely generated projective O_K -modules of rank l which are orders over O_K in KG. These have been classified by Tate and Oort [23], and are completely determined by their local structure at completions of O_K and at K [23, Lemma 4].

Let $K_{\mathfrak{p}}$ be the completion of K at a (finite) prime \mathfrak{p} , R the valuation ring. If $\mathfrak{p} \cap Z \neq (l)$, then the only Hopf R-algebra of interest is the group ring RG, which, since R contains 1/l and ζ , is isomorphic to $\operatorname{Hom}_R(RG,R) = (RG)^*$.

The local structure of the Tate-Oort Hopf algebras when $\mathfrak{p} \cap Z = (l)$, involves certain constants $\omega_1, \ldots, \omega_l$, obtained as follows.

Let $\chi: F_l \to Z_l \subseteq R$ be the unique multiplicative section of the residue class map $Z_l \to F_l$ [17, p. 44]. In RG, let

(3.1)
$$\theta_{i} = -\sum_{m \in \mathbf{F}_{i}^{*}} \chi^{i}(m) \sigma^{m}, \qquad i = 1, \dots, l - 2,$$
$$\theta_{l-1} = l - \sum_{j=0}^{l-1} \sigma^{j}$$

[23, p. 9]. Then $\theta_1^i = \omega_i \theta_i$, i = 1, ..., l-1, and $\theta_1^l = \omega_l \theta_1$, for some elements $\omega_1, ..., \omega_l$, of R, where $\omega_1 = 1, \omega_2, ..., \omega_{l-1}$ are units of R, and $\omega_l = l\omega_{l-1}$. (See [23, formula (17)] for an inductive definition of the ω_i .)

Let H be a Hopf R-algebra, free as an R-module of rank l. Then [23, p. 14] there exist a, b in R, $ab = \omega_l$, such that $H = R[\xi]$ where $\xi^l = b\xi$ as R-algebra, and the comultiplication Δ : $H \to H \otimes H$ is given by

$$\begin{split} \Delta\left(\xi^{i}\right) &= 1 \otimes \xi^{i} + \xi^{i} \otimes 1 \\ &+ \frac{\omega_{i}}{1-l} \left[\sum_{i=1}^{i-1} \frac{\xi^{j}}{\omega_{j}} \otimes \frac{\xi^{i-j}}{\omega_{i-j}} + \sum_{i=i}^{l-1} a \frac{\xi^{j}}{\omega_{j}} \otimes \frac{\xi^{(l-1)+(i-j)}}{\omega_{(l-1)+(i-j)}} \right], \end{split}$$

the counit ε : $H \to R$ by $\varepsilon(\xi^i) = 0$ for i > 0, and the antipode λ : $H \to H$ by $\lambda(\xi) = -\xi$. The Hopf algebra H is thus defined by the constants a and b, which satisfy $ab = \omega_I$. If p = 2, $\lambda(\xi) = \xi$.

Denote the Hopf algebra $H = R[\xi]$, $\xi' = b\xi$, by H_b .

With this notation, $RG = H_{\omega_l}$, $(RG)^* = H_1$.

The identification $RG = H_{\omega_l} = R[\theta], \ \theta^l = \omega_l \theta$, is given by (3.1) and by

(3.2)
$$\sigma^{m} = 1 + \frac{1}{1 - l} \left(\sum_{i=1}^{l-1} \frac{\chi^{i}(m)}{\omega_{i}} \theta^{i} \right) \quad \text{for } m = 1, \dots, l-1.$$

(cf. [23, p. 15, Remark 5]). There is an inclusion $H_b \subseteq H_b$, if and only if there is an element u of R such that $u^{l-1}b'=b$, in which case the map is given as follows: if $H_b=R[\xi],\ H_{b'}=R[\xi']$, then $\xi\mapsto u\xi'$: $(u\xi')^l=u^lb'\xi'=b(u\xi')$.

Whenever $\zeta \in R$, $RG \cong (RG)^*$, so ω_l has an (l-1)th root $\tilde{\omega}_l$ in R. In general, the Hopf algebra H_b , $b \neq 0$ is a subalgebra of KG if and only if $H_b \otimes K \cong KG \cong (KG)^* \cong H_1 \otimes K$, if and only if b has an (l-1)th root \tilde{b} in R. In case \tilde{b} exists, so does $\tilde{a} = \tilde{\omega}_l/\tilde{b}$, and so from $\tilde{a}^{l-1}b = \omega_l$ and $\tilde{b}^{l-1} \cdot 1 = b$ and (3.2) we obtain inclusions

$$RG = H_{\omega} \subseteq H_h \subseteq H_1 = (RG)^*$$
.

PROPOSITION 3.3. Let K be a local or global algebraic field containing a primitive lth root of unity ξ , and let R be the ring of integers of k. Then the set of isomorphism classes of Hopf R-algebras contained in KG, G cyclic of order l, is in 1-1 lattice-preserving correspondence with the set of ideals dividing lR which are (l-1)th powers.

PROOF. If H is a Hopf R-algebra of rank l, then H is uniquely determined by its images at completions of R. Let $\mathfrak p$ be a prime divisor of lR and $R_{\mathfrak p}$, $K_{\mathfrak p}$ be the completions of R, K at $\mathfrak p$, respectively. Then $H\otimes_R R_{\mathfrak p}=H_b$ for b some divisor of $lR=(1-\xi)^{l-1}R=\mathfrak p^{(l-1)e}$. Since $H_b\subseteq K_{\mathfrak p}G$, b is an (l-1)th power, so $bR=\mathfrak p^{(l-1)s}$ for some s, $0\leqslant s\leqslant e$. If $l\notin \mathfrak p$ then $H\otimes_R R_{\mathfrak p}=R_{\mathfrak p}G\cong (R_{\mathfrak p}G)^*=H_1$, so e=0. Thus to H corresponds the ideal $\mathscr B=\prod_{\mathfrak p\mid l}\mathfrak p^{(l-1)s}$. The lattice-preserving property follows from (3.2).

NOTATION. (3.4). Denote by $H_{\mathscr{B}}$ the Hopf subalgebra of KG corresponding to the ideal \mathscr{B} of O_K . If $\mathscr{B} = \ell^{l-1}$, for each prime ideal \mathfrak{p} of O_K , $H_{\mathscr{B}} \otimes_{O_K} \hat{O}_{K,\mathfrak{p}} = H_b$ where b is the (l-1)th power of a generator of $\ell \otimes_{O_K} \hat{O}_{K,\mathfrak{p}}$

(3.5) For $H = H_b = R[\xi]$, the space of integrals I is the free R-module generated by $b - \xi^{l-1}$, as is easily checked. In KG, $b - \xi^{l-1}$ has a familiar look: if $RG = H_{\omega_l} = R[\theta]$, $\theta = \tilde{a}\xi$, so

$$\xi^{l-1} = \frac{1}{a} \theta^{l-1} = \frac{1}{a} \omega_{l-1} \theta_{l-1}$$
$$= \frac{1}{a} \omega_{l-1} \left(l - \sum_{j=0}^{l-1} \sigma^j \right) \quad \text{(from (3.1))}$$

and so

$$b - \xi^{l-1} = \frac{\omega_{l-1}}{a} \sum_{j=0}^{l-1} \sigma^j = \frac{b}{l} \sum \sigma^j.$$

Of course $\sum_{j=0}^{l-1} \sigma^j$ generates the space of integrals of RG.

We will denote $\sum_{\sigma \in G} \sigma = \text{tr}$ since the action of tr on an RG-module gives the trace map.

4. The quadratic case. Every quadratic extension is tame. While this will follow as a special case of later results, we give here a short direct argument.

THEOREM 4.1. Let R be a Dedekind domain with quotient field K, let L be a quadratic field extension of K with Galois group $G = \langle \sigma \rangle$ of order 2. Let S be the integral closure of R in L. Suppose $\operatorname{tr}(S) = aR$, a principal ideal of R. Then S is a tame H_b extension, b = 2/a, and $H_b = \{ \alpha \in KG | \alpha S \subseteq S \}$.

PROOF. First we note that a divides 2, since tr(1) = 2 is in aR. So $RG = H_2 \subseteq H_b = R[\xi]$ by $\xi = (1 - \sigma)/a$, $\sigma = 1 - a\xi$.

First, H_b acts on S. For suppose s is in S, $\operatorname{tr}(s) = ar$. Then $(\sigma + 1)s = ar$ for some r in R, so $\sigma(s) = ar - s$, and $\xi s = ((1 - \sigma)/a)s = bs - r$, thus $H_b S \subseteq S$.

The space of integrals I of H is generated by $b - \xi = 2/a - ((1 - \sigma)/a) = (\sigma + 1)/a$, and if tr(s) = a, then $((\sigma + 1)/a)s = 1$. So IS = R, and S is a tame H_b -module algebra.

Let $\mathscr{A} = \{ \alpha \in KG \mid \alpha S \subset S \}$. Since $\mathscr{A}S \subseteq S$, \mathscr{A} is integral over R, so $\mathscr{A} \subseteq (RG)^* = H_1 = R[y]$, $y^2 = y$. Further, $H_b \subseteq H_1$ by $\xi = by$. So any α in \mathscr{A} has the form $\alpha = m + n(\xi/b)$, m, n in R. Let s be in S, not in R, with $\operatorname{tr}(s) = a$. If α is in \mathscr{A} , then

$$(m + n(\xi/b))(s) = ms + n\xi s/b$$

$$= ms + n(bs - 1)/b$$

$$= ms + ns - n/b \text{ is in } S,$$

and so n/b is in R. But then $\alpha = m + n(\xi/b) = m + (n/b)\xi$ is in $R[\xi] = H_b$, and $\mathscr{A} \subseteq H_b$. That completes the proof.

COROLLARY 4.2. If $L \supset K$ is any quadratic extension of number fields, then there is an O_{K} -Hopf algebra H such that O_{L} is a tame H-module algebra.

If $tr(O_L)$ is a principal ideal of O_K this is immediate from (4.1). In general, this follows from the proof of Theorem 4.1, used as a local argument (see §17, below).

EXAMPLES. Let K = Q, $L = Q(\sqrt{d})$, d square-free. Then O_L is a tame H_b -module algebra, where

$$\begin{cases} b = 2 \ (H_b = RG) & \text{if } d \equiv 1 \ (\text{mod } 4), \\ b = 1 \ (H_b = (RG)^*) & \text{if } d \equiv 2, 3 \ (\text{mod } 4). \end{cases}$$

For $K \neq Q$, numerous examples of quadratic extensions $L \supset K$ for which O_L is a Galois, hence tame H_b -module algebra, for $H_b \neq O_K G$ or its dual, are described in [8].

5. Absolutely abelian extensions. In this section we show that unless the abelian extension $L \supset Q$ is tamely ramified except possibly at the prime 2, and then only with ramification group cyclic of order ≤ 2 , the ring of integers O_L of L is not tame for any Z-Hopf subalgebra of QG, $G = \operatorname{Gal}(L/Q)$.

THEOREM 5.1. Let G be a finite abelian group, and let $\mathscr A$ be an order over Z in QG generated by ZG and, for each prime p dividing the order of G, an idempotent

$$e_p = \frac{1}{|G_p|} \sum_{\sigma \in G_p} \sigma \qquad (|G_p| = order \ of \ G_p)$$

corresponding to some (possibly trivial) p-subgroup G_p of G. Then $\mathscr A$ is a Hopf subalgebra of QG if and only if $|G_2| \le 2$ and G_p is trivial for all odd p.

PROOF. Suppose $m = |G_p| > 2$ for some p, and fix $\pi, \rho \neq 1$ in G_p . Now in QG,

$$\Delta e_p = \frac{1}{m} \sum_{\sigma \in G_p} \sigma \otimes \sigma.$$

Since \mathscr{A} is generated over Z by elements of G and idempotents e_q for q dividing the order of G, Δe_p is in $\mathscr{A} \otimes \mathscr{A}$ if and only if Δe_p is a Z-linear combination of the generators $\sigma \otimes \tau$, $\sigma \otimes e_{q'}e_q \otimes \tau$, and $e_q \otimes e_{q'}$ in $\mathscr{A} \otimes \mathscr{A}$, for σ , τ in G and q, q' running through prime divisors of the order of G.

We suppose we can write Δe_p as such a Z-linear combination, and (in $QG \otimes QG$) collect the coefficients of $\pi \otimes \pi$, $\pi \otimes \rho$, $\rho \otimes \pi$, $\rho \otimes \rho$. Since π , $\rho \neq 1$ in G, the only generators of $\mathscr{A} \otimes \mathscr{A}$ which contribute nonzero coefficients are the generators $\pi \otimes \pi$, $\pi \otimes \rho$, $\rho \otimes \pi$ and $\rho \otimes \rho$ themselves, together with $e_p \otimes \pi$, $e_p \otimes \rho$, $\pi \otimes e_p$, $\rho \otimes e_p$, and $e_p \otimes e_p$. (The nonidentity terms in e_q , $q \neq p$, lie in G_q , and $G_q \cap G_p = (1)$.)

We write

$$\begin{split} \Delta e_p &= \frac{1}{m} \sum_{\sigma \in G_p} \sigma \otimes \sigma = a_{0,0} e_p \otimes e_p + \sum_{\sigma \in G_p} a_{\sigma,0} \sigma \otimes e_p \\ &+ \sum_{\tau \in G_p} a_{0,\tau} e_p \otimes \tau + \sum_{\sigma,\tau \in G_p} a_{\sigma,\tau} \sigma \otimes \tau \\ &+ \left(\text{other terms not containing } \sigma \otimes \tau \text{ for } \sigma, \tau \neq 1 \text{ in } G_p \right), \end{split}$$

with all coefficients in Z. Then, collecting coefficients of $\pi \otimes \pi$:

(5.2)
$$\frac{1}{m} = \frac{1}{m^2} a_{0,0} + \frac{1}{m} a_{\pi,0} + \frac{1}{m} a_{0,\pi} + a_{\pi,\pi}$$

of $\pi \otimes \rho$:

(5.3)
$$0 = \frac{1}{m^2} a_{0,0} + \frac{1}{m} a_{\pi,0} + \frac{1}{m} a_{0,\rho} + a_{\pi,\rho}$$

of $\rho \otimes \pi$:

(5.4)
$$0 = \frac{1}{m^2} a_{0,0} + \frac{1}{m} a_{\rho,0} + \frac{1}{m} a_{0,\pi} + a_{\rho,\pi}$$

of $\rho \otimes \rho$:

(5.5)
$$\frac{1}{m} = \frac{1}{m^2} a_{0,0} + \frac{1}{m} a_{\rho,0} + \frac{1}{m} a_{0,\rho} + a_{\rho,\rho}.$$

Multiplying the four equations by m and taking the differences (5.2)–(5.3) and (5.4)–(5.5), yields

$$1 = (a_{0,\pi} - a_{0,\rho}) + m(a_{\pi,\pi} - a_{\pi,\rho}),$$

$$-1 = (a_{0,\pi} - a_{0,\rho}) + m(a_{\rho,\pi} - a_{\rho,\rho}),$$

impossible if m > 2. Thus Δe_p is not in $\mathscr{A} \otimes \mathscr{A}$ if $|G_p| > 2$. Since G_p is a p-group, if \mathscr{A} is a Hopf subalgebra of QG we must have $G_p = (1)$ if p is odd, and $|G_2| \leq 2$.

Conversely, if $\mathscr{A}=ZG+ZGe_2$ where $G_2=\langle\sigma\rangle$ has order 2, then $e_2=(1+\sigma)/2$, \mathscr{A} contains $\bar{e}_2=e_2-\sigma=(1-\sigma)/2$, and $\Delta e_2=e_2\otimes e_2+\bar{e}_2\otimes\bar{e}_2$. So \mathscr{A} is a Z-Hopf subalgebra of QG.

NOTE. For G of odd order, Theorem 5.1 follows from a theorem of R. Larson [30].

COROLLARY 5.6. If $L \supset Q$ is an abelian extension with Galois group G, then the order \mathscr{A} of O_L in QG is a Hopf subalgebra of QG if and only if either $L \supset Q$ is tamely ramified (i.e. $\mathscr{A} = \mathbf{Z}G$), or the only prime which ramifies wildly in L is 2 and the first ramification group of G corresponding to 2 has order 2.

This follows from the description of the order \mathcal{A} given in [17], cf. [1].

PROPOSITION 5.7. Let $L \supset Q$ be an abelian extension with Galois group G. Then O_L is tame with respect to some Hopf subalgebra of KG if and only if L is tamely ramified except possibly at 2, and the first ramification group of G for the prime 2 has order dividing 2.

PROOF. If L satisfies the ramification conditions, then the order \mathscr{A} of O_L in KG is a Hopf algebra by Corollary 5.6. That O_L is tame then follows from Theorem 2.1.

Conversely, if O_L does not satisfy the ramification hypothesis, then the order \mathscr{A} of O_L in QG is not a Hopf algebra. But then, as Bergé notes [1, p. 17], O_L cannot be locally free for any order in KG other than \mathscr{A} , so, in particular, O_L cannot be a tame J-module for any order J which is a Hopf subalgebra of KG. This completes the proof of Proposition 5.7.

6. Orders of Kummer extensions. We now proceed to the case of Kummer extensions of prime order.

Let $L \supset K$ be a Kummer extension of number fields of prime order l. If the order \mathscr{A} of O_L in KG is a Hopf algebra, it is a Hopf algebra of the kind described by Tate and Oort [23], so by (3.3) $\mathscr{A} = H_{\mathscr{B}}$ for some ideal $\mathscr{B} = \ell^{l-1}$ dividing lO_K . Using this fact, we obtain a necessary condition for \mathscr{A} to be a Hopf algebra.

THEOREM 6.1. Let $L \supset K$ be a Kummer extension of prime order l. If \mathscr{A} , the order of O_L in KG, is a Hopf algebra isomorphic to $H_{\mathscr{B}}$ and $\mathscr{BW} = lO_K$, then $\operatorname{tr}(O_L) = \mathscr{W}$. Hence $\operatorname{tr}(O_L)$ is the (l-1)th power of an ideal of O_K .

PROOF. If \mathscr{A} is a Hopf algebra, then O_L is locally isomorphic to \mathscr{A}^* as \mathscr{A} -module, $\mathscr{A}^* = \operatorname{Hom}_{O_K}(\mathscr{A}, O_K)$. Now \mathscr{A}^* is the trivial Galois \mathscr{A}^* -object, so $I\mathscr{A}^* = O_K$, I the space of integrals of \mathscr{A} , by [9, Proposition 2.3]. Since O_L is locally isomorphic to \mathscr{A}^* as \mathscr{A} -module, $IO_L = O_K$.

Locally at \mathfrak{p} , $\mathscr{A} = H_{p^{(l-1)s}}$ for some $s, 0 \le s \le e$, where $lO_{K,\mathfrak{p}} = \mathfrak{p}^{(l-1)e}$ and p is a uniformizing parameter for \mathfrak{p} . So \mathscr{A} corresponds to the ideal $\mathscr{B} = \prod \mathfrak{p}^{(l-1)s}$. But if θ generates the space of integrals of $H_{p^{(l-1)s}}$, then since $O_{K,p}G = H_{p^{(l-1)e}}$, $\mathrm{tr} = p^{(l-1)(e-s)}\theta$. Thus

$$\operatorname{tr} O_L = \prod p^{(l-1)(e-s)} = (lO_K) (\prod \mathfrak{p}^{(l-1)s})^{-1} = (lO_K) (\mathscr{B})^{-1}.$$

Since $lO_K = (1 - \zeta)^{l-1}O_K$ and \mathscr{B} is an (l-1)th power by Theorem 3.3, $\mathscr{W} = \operatorname{tr} O_L$ is an (l-1)th power of an ideal of O_K .

One objective of the remainder of this paper is to prove the converse of this result, Theorem 17.3 below.

7. The local case. I: Which Hopf algebra can occur? In the following sections we will focus on the situation where K is a local field containing a primitive lth root of unity ζ , l prime, and $L \supset K$ is a Kummer extension, L = K[z], $z^l = w \in K$, with Galois group $G = \langle \sigma \rangle$ acting on L by $\sigma(z) = \zeta z$. Let R be the valuation ring of K. We shall determine the tame and the Galois H_b -extensions of R contained in S, the integral closure of R in L, and, in particular, find criteria for S itself to be a tame H_b -extension of R for some b, where H_b is the Tate-Oort Hopf algebra $H_b = R[\xi]$, $\xi^l = b\xi$.

In this section we show that if T is an order over R in L which is a faithful J-extension of R for some Hopf algebra J of rank l, then J must be a sub-Hopf algebra of KG, hence, since J must be of the form H_b for some b in R, b must have an (l-1)th root in R. We first look at L itself.

PROPOSITION 7.1. Let K be a local or global number field containing 1/l and a primitive lth root of unity, l prime. Let L be a Galois field extension of K with Galois group $G = \langle \sigma \rangle$, cyclic of order l. For $b \neq 0$ in K, H_b acts faithfully on L if and only if b has a (l-1)th root \tilde{b} in K, if and only if $H_b \cong KG$.

PROOF. Given b, let $K' = K[\tilde{b}]$, $L' = L \otimes K'$, $H'_b = H_b \otimes K'$. We have $H_{\omega_l} = KG \cong (KG)^* = H_1$, so by (3.2), ω_l has an (l-1)th root $\tilde{\omega}_l$ in K.

Let φ : $H_b \otimes L \to L$ be a measuring. Then φ induces φ' : $H_b' \otimes L' \to L'$, a measuring. But $H_b' = H_{b'^{-1}} \cong H_{\omega_i}$, so the action φ yields an action of $H_{\omega_i} = K'G$ on L', that is, a map $G \to \operatorname{Aut}_{K'}(L')$.

Now since L/K is a Galois field extension of prime degree l and [K':K] divides l-1, L' is a field. For if L=K[z], $f(x)=\mathrm{Irr}(z,K)$, the minimal polynomial of z over K, and $g(x)=\mathrm{Irr}(z,K')$, then, since L/K is Galois, $f(x)=\prod\sigma(g(x))$ where σ runs through a transversal of the stabilizer of g(x) in G. Since $\deg(f(x))=l$, prime, $\deg(g(x))=1$ or l. If $\deg(g(x))=l$, L' is a field; if $\deg(g(x))=1$, then z is in K', so $\mathrm{Irr}(z,K)$ has $\mathrm{degree} \leq \deg[K':K] < l$, impossible.

Thus if L = K[z], z' = w, then L' = K'[z] is a field, and the only actions of G on L' are those given by $\sigma(z) = \zeta z$ for ζ some primitive 1th root of unity.

Let $H'_{\omega_i} = K'G = K'[\theta]$, $\theta' = \omega_i \theta$; $H_b = K[\xi]$, $\xi' = b\xi$; then we have an isomorphism of Hopf algebras $H'_{\omega_i} \to H'_b$ by $\theta \mapsto \tilde{a}\xi$, $\tilde{a} = \tilde{\omega}_i/\tilde{b}$. Here

$$\theta = -\sum_{m=1}^{l-1} \chi^{-1}(m) \sigma^m.$$

Thus any action of G on L' extends uniquely to an action of H_b' on L', and so given the action of G, $\sigma(z) = \zeta z$, for some root of unity ζ , we have

$$\xi z^{i} = \left(-\frac{1}{\tilde{a}}\sum_{m}\chi^{-1}(m)\zeta^{im}\right)z^{i}.$$

Since $H_b = K[\xi]$ acts on L and $z^i \in L$, then ξz^i is in L for all i, that is, for all i, $-(1/\tilde{a})\sum_m \chi^{-1}(m)\xi^{im}$ is in L. But since $\sum_m \chi^{-1}(m)\xi^{im} \in L$, that is the case if and only if \tilde{a} is in L or $\sum \chi^{-1}(m)\xi^{im} = 0$ for all i; and the latter possibility cannot occur, since otherwise ξ would act trivially on L and the action of H_b on L would be unfaithful.

Thus if H_b acts on L, then $\tilde{b} = \tilde{\omega}_l/\tilde{a}$ is in K, and $H_b \cong H_{\omega_l}$. That completes the proof of Proposition 7.1.

COROLLARY 7.2. Let $L \supset K$ be a Galois extension of local fields, cyclic of order l, prime, where K contains 1/l and a primitive lth root of unity. Let R be the valuation ring of K, T an integral R-subalgebra of L with TK = L, which is an H_b -extension of R for b in R. Then H_b is an order over R in KG containing RG, and b is an (l-1)th power in R.

PROOF. If H_b acts on S, $H_b \otimes K$ acts on L, so since R is integrally closed, Proposition 7.1 implies that \tilde{b} , an (l-1)th root of b, is in R, and the inclusion $H_b \subseteq KG$ then follows from (3.2). Since b divides l by definition of H_b , we have $RG \subseteq H_b$.

The uniqueness in Theorem 7.1 may also be obtained as a special case of Theorem 3.1 of [27].

8. Kummer orders. Now we begin the classification of H_b -extensions S as in (7.2) which are tame. First we consider the case b = 1, $H_b = (RG)^*$.

PROPOSITION 8.1. Let $L \supset K$ be a Galois extension of local fields with Galois group G, cyclic of order l, and suppose K contains a primitive lth root of unity. Let R be the valuation ring of K, and let S be the integral closure of R in L. Let \tilde{S} be the Kummer order of S [12], $\tilde{S} = \sum_{x \in \hat{G}} S_x$, where

$$S_{\chi} = \{ s \in S \mid \sigma(s) = \chi(\sigma) s \text{ for all } \sigma \text{ in } G \}.$$

Then \tilde{S} is a tame $(RG)^*$ -extension of R contained in S, $\tilde{S} = R[z]$, z^l in R, and the tame $(RG)^*$ -extensions of R contained in S are the G-graded subalgebras T of \tilde{S} ,

$$T = \sum_{i=0}^{I-1} Rc_i z^i$$
, c_i in R , $c_i \neq 0$, with $c_0 = 1$.

PROOF. Let p be a uniformizing parameter for the maximal ideal p of R.

First we identify \tilde{S} . Let L = K[y], y' in K. By altering y by an lth power, we can choose y' = w in R with $v_{\mathfrak{p}}(w)$, the \mathfrak{p} -adic valuation of w, satisfying $0 \le v_{\mathfrak{p}}(w) < l$, so y is in S.

If $v_{\mathfrak{p}}(w) = 0$, i.e. w is a unit, then $\tilde{S} = R[y]$. For since y' is in R, the map χ : $G \to K$ by $\chi(\sigma) = \sigma(y)/y$ is a character of G which generates the character group \hat{G} , and

$$S_{x^i} = S \cap L_{x^i} = S \cap Ky^i \supseteq Ry^i;$$

since y^i is a unit of S, $S_{x^i} = Ry^i$.

If $v_{\mathfrak{p}}(w) = r > 0$, let rs - kl = 1, and let $z = y^s/p^k$. Then $z^l = y^{sl}/p^{kl} = w^s/p^{kl}$ and $v_{\mathfrak{p}}(z^l) = rs - kl = 1$. In that case, z is the root of the Eisenstein polynomial $Z^l - z^l$, so L/K is totally ramified and S = R[z]. In that case, if $\chi(\sigma) = \sigma(z)/z$, then $S_{\gamma'} = Rz^i$, and $S = \tilde{S}$.

Set $(RG)^* = \sum Re_{\chi}$, $e_{\chi} = (\sum_{\sigma} \chi(\sigma^{-1})\sigma)/l$; the integral I of $(RG)^* = Re_{\chi_0}$. Then $e_{\chi}S = S_{\chi}$ and in particular, $IS = S_{\chi_0} = S^G = R$. Since \tilde{S} is a faithful $(RG)^*$ -module of rank l, \tilde{S} is a tame $(RG)^*$ -extension of R. \tilde{S} is a Galois $(RG)^*$ -extension of R if and only if $\tilde{S} = R[z]$ with z a unit of R, if and only if $v_{\psi}(w) = 0$ (cf. Example 11.6 below).

Write $\tilde{S} = R[z]$ with $\sigma(z) = \chi(\sigma)z$.

Let T be an $(RG)^*$ -module subalgebra of S. Then

$$T = (RG)^*T = \sum Re_{\chi'}T = \sum e_{\chi'}T = \sum T_{\chi'}$$

and $T_{\chi'} \subseteq S_{\chi'}$. Thus T is a G-graded subalgebra of \tilde{S} . Tameness means simply that $T_{\chi_0} = R$ and each $T_{\chi'} \neq (0)$, from which the description of T given in the statement of the theorem is clear.

COROLLARY 8.2. With L, K, S, R, G as in Proposition 8.1, there exists a Galois $(RG)^*$ -module subalgebra of S if and only if S = R[z] with z^l a unit of R, in which case \tilde{S} is the unique such Galois $(RG)^*$ -module algebra.

PROOF. T is a Galois $(RG)^*$ -module algebra if and only if $T = \sum T_{\chi}$ with $T_{\chi} = Rz_{\chi}$ and $T_{\chi}T_{\psi} = T_{\chi\psi}$ for all χ , ψ in \hat{G} , in particular, $T_{\chi}^{l} = R$. Thus T is Galois if and only if each z_{χ} is a unit of S, in which case $T_{\chi} = S_{\chi}$, $T = \tilde{S}$ and $\tilde{S} = R[z]$ with z^{l} a unit of R.

9. Galois extensions. In contrast to the situation for $H_b = H_1 = (RG)^*$, we have

Theorem 9.1. Let R be a local ring containing a primitive lth root of unity, l prime, with l contained in the maximal ideal $\mathfrak p$ of R; let G be cyclic of order l. Let H_b be a Tate-Oort Hopf R-algebra, $RG \subseteq H_b \subseteq (RG)^*$. Suppose $b \in \mathfrak p$. Then any tame H_b -extension of R is Galois.

PROOF (from [13, Theorem 4.4]). Let $H_b = R[\xi]$, $\xi' = b\xi$; then $\phi = \xi'^{-1} - b$ generates the space of integrals of H_b . If S is tame, then $\phi s = 1$ for some s in S.

We claim that $s, \xi s, \xi^2 s, \dots, \xi^{l-1} s$ is an R-basis of S. To see this, it suffices to show it mod p. But mod $p, \xi^{l-1} s \equiv 1$ and $\xi^l s \equiv 0$. Suppose

$$\sum_{i=0}^{l-1} r_i \xi^i s \equiv 0 \pmod{p}.$$

If k is the least index with $r_k \neq 0$, then since $\xi^l s \equiv 0 \pmod{p}$,

$$0 \equiv \xi^{l-1-k} \left(\sum_{i=1}^{l-1} r_i \xi^i s \right) \equiv r_k \xi^{l-1} s \equiv r_k.$$

So, mod $p, s, \xi s, \xi^2 s, \ldots, \xi^{l-1} s$ are linearly independent, so are a basis. Thus, $s, \xi s, \ldots, \xi^{l-1} s$ span S over R [5, II, §3, No. 2, Corollaire 2]. But since S is tame S is free over R of rank l. Hence $s, \xi s, \ldots, \xi^{l-1} s$ form a basis of S.

Let h_0, \ldots, h_{l-1} be a dual basis in H_b^* for $1, \xi, \xi^2, \ldots, \xi^{l-1}$ in H_b . Now S is an H_b^* -object via the map $\alpha: S \to S \otimes H_b^*$ given by

$$\alpha(s) = \sum_{i} \xi^{i} s \otimes h_{i}.$$

Define $\gamma: S \otimes S \to S \otimes H$ by

$$\gamma(s\otimes t)=\sum_{i}s\xi^{i}t\otimes h_{i}.$$

Then S is a Galois H_b -extension of R if and only if γ is an isomorphism. Since $S \otimes S$ and $S \otimes H_b^*$ are of equal ranks as free R-modules, it suffices to show that γ is surjective modulo p [5, II, §3, No. 2, Corollaire 1]. So for the rest of the proof, assume R is a field with b = l = 0.

We show that γ is surjective by finding, for each i, elements a_k and b_k in S such that $\gamma(\sum a_k \otimes b_k) = 1 \otimes h_i$, as follows: we set $b_k = \xi^{l-1-k}s$ for all k, and

$$a_k = \begin{cases} 0 & \text{for } k > i, \\ 1 & \text{for } k = i, \\ -\sum_{m > k} a_m (\xi^k b) & \text{for } k < i. \end{cases}$$

Then

$$\begin{split} \gamma \Big(\sum_k a_k \otimes b_k \Big) &= \sum_j \bigg(\sum_k a_k \xi^j b_k \bigg) \otimes h_j \\ &= \sum_j \bigg(\sum_k a_k \xi^j \xi^{l-1-k} s \bigg) \otimes h_j \\ &= \sum_j \bigg(\sum_{k \geq j} a_k \xi^{l-1+j-k} s \bigg) \otimes h_j \end{split}$$

since $\xi' = b\xi = 0$,

$$= \sum_{j} \left(\sum_{k \geq j} a_k \xi^j b_k \right) \otimes h_j.$$

For j > i, $k \ge j$, $a_k = 0$, so

$$\sum_{k\geqslant j}a_k\xi^jb_k=0.$$

For j = i,

$$\sum_{k \geqslant i} a_k \xi^j b_k = a_i \xi^i b_i + \sum_{k > i} a_k \xi^i b_k = a_i \xi^i b_i;$$

since $a_i = 1$ and $\xi^i b_i = \xi^{l-1} s = 1$, $\xi^i b_i = 1$.

For j < i,

$$\sum_{k \geqslant i} a_k \xi^j b_k = \sum_{k > i} a_k \xi^j b_k + a_j \xi^j b_j.$$

Now $\xi^j b_i = 1$, and, substituting for a_i , we get

$$= \sum_{k>i} a_k \xi^j b_k - \sum_{m>i} a_m \xi^j b_m = 0.$$

Thus $\gamma(\sum a_k \otimes b_k) = 1 \otimes h_i$, completing the proof.

10. Frobenius conditions on Galois *H*-extensions. We develop some general theory for *H*-extensions which may be of independent interest.

Let R be a commutative ring with unity, and H a finite (i.e. finitely generated and projective as R-module) R-Hopf algebra. Finiteness implies that the space of left integrals of H,

$$I = \{ \theta \in H | h\theta = \varepsilon(h)\theta, \text{ for all } h \text{ in } H \}$$

is a rank one projective R-module, as is the space of right integrals. Following Larson and Sweedler [16], H is called unimodular if the space of left integrals equals the space of right integrals.

Let S be an R-algebra, finitely generated and projective as R-module ("finite"), and an H-extension.

If $S^H = R$, then S is a Galois H-extension of R if and only if the map

$$j: S \sharp H \to \operatorname{End}_R(S), \quad j(s \sharp h)(t) = sh(t)$$

is an isomorphism [7, Theorem 9.3]. Denote the image of S in End_R(S) under j by S_i , the set of left multiplications by elements of S.

THEOREM 10.1. Let H be a finite unimodular Hopf algebra with space of integrals I, and S a finite R-algebra and an H-module algebra with $S^H = R$. Then S is a Galois H-extension of R if and only if the map φ : $I \otimes S \to S^*$ (= $\operatorname{Hom}_R(S, R)$), $\varphi(\theta, s)(t) = \theta(st)$ for θ in I, s, t in S, is an isomorphism.

PROOF. For M an R-submodule of $\operatorname{End}_R(S)$ denote by $I \cdot M$ the set $\{\theta m \mid m \text{ in } M, \theta \text{ in } I\}$. Then since $IS \subseteq S^H = R$, $I \cdot S_l \subseteq S^* \subseteq \operatorname{End}_R(S)$. The image of φ is then $I \cdot S_l$. Since $I \otimes S$ and S^* are both finitely generated projective R-modules of equal ranks, φ is an isomorphism if and only if φ is an epimorphism, if and only if $I \cdot S_l = S^*$. So we shall show that S is Galois if and only if $I \cdot S_l = S^*$.

LEMMA 10.2.
$$I \cdot (S \sharp H)_I = I \cdot S_I$$
.

Assuming the lemma, the proof of the theorem proceeds as follows.

Suppose $I \cdot S_i = S^*$. Then we have the diagram

$$S \otimes S^* = S \otimes I \cdot S_l = S \otimes I \cdot (S \sharp H)_l$$
 $\downarrow m$
 $\text{End}(S) \supseteq j(S \sharp H)$

where

$$m(s \otimes \theta(s'\sharp h))(t) = \left(\sum s(\theta_{(1)}s')\sharp \theta_{(2)}h\right)(t)$$
$$= \sum s(\theta_{(1)}s')(\theta_{(2)}h)(t)$$
$$= j\left(\sum s(\theta_{(1)}s')\sharp \theta_{(2)}h\right)(t)$$

and $\mu(s \sharp f)(t) = s f(t)$.

The diagram commutes: for given s, s' in S, θ in I, we have $\mu(s \otimes \theta \cdot s')(t) = s\theta(s't)$, while

$$m(s \otimes \theta \cdot s')(t) = \sum s(\theta_{(1)}s')(\theta_{(2)}t) = s\theta(s't)$$
 (by measuring).

Thus $j(S \# H) = \operatorname{End}_{R}(S)$, and S is Galois.

Conversely, suppose S is a Galois H^* -object. Then $\operatorname{End}_R(S) \cong S \sharp H$, and by Morita theory

$$\operatorname{End}_{R}(S) \cong S \otimes I \cdot (S \sharp H)_{I} = S \otimes I \cdot S_{I}$$

by Lemma 10.2, where the map $S \otimes I \cdot S_l$ to End_R(s) is μ . Thus the diagram

$$S \otimes S^* \leftarrow S \otimes I \cdot S_I$$

$$\stackrel{\otimes}{=} \operatorname{End}_R(S)$$

commutes, and so the inclusion $I \cdot S_l \subset S^*$ induces an isomorphism $S \otimes I \cdot S_l \cong S \otimes S^*$. Since S is R-faithfully flat, $I \cdot S_l = S^*$.

We are left only with proving the lemma: $I \cdot S_l = I \cdot (S \sharp H)_l$. PROOF OF LEMMA 10.2. For $x, y \in S$, $h \in H$, $\phi \in I$, we have

$$(\phi(y\sharp h))(x) = \sum \phi_{(1)}(y)\phi_{(2)}h(x)$$

$$= \sum \phi_{(1)}(y)\phi_{(2)}\varepsilon(h_{(1)})h_{(2)}(x) \quad \text{since } (1 \otimes \varepsilon)\Delta = \text{id},$$

$$= \sum \phi_{(1)}(\varepsilon(h_{(1)}^{\lambda}))(y)\phi_{(2)}h_{(2)}(x)$$

$$= \left(\sum \phi_{(1)}\varepsilon(h_{(1)}^{\lambda})\otimes \phi_{(2)}h_{(2)}\right)(y \otimes x)$$

$$= \Delta(\phi\varepsilon(h_{(1)}^{\lambda}))(1 \otimes h_{(2)})(y \otimes x) \quad \text{since } \phi \text{ is a right integral,}$$

$$= \left(\sum \phi_{(1)}h_{(1)}^{\lambda}\otimes \phi_{(2)}h_{(2)}^{\lambda}h_{(3)}\right)(y \otimes x)$$

$$= \left(\sum \phi_{(1)}h_{(1)}^{\lambda}\otimes \phi_{(2)}\varepsilon(h_{(2)}^{\lambda})\right)(y \otimes x)$$

$$= \left(\sum \phi_{(1)}h_{(1)}^{\lambda}\otimes \phi_{(2)}\varepsilon(h_{(2)}^{\lambda})\right)(y \otimes x)$$

$$= \left(\sum \phi_{(1)}h_{(1)}^{\lambda}\varepsilon(h_{(2)}^{\lambda})\otimes \phi_{(2)}\right)(y \otimes x)$$

$$= \left(\sum \phi_{(1)}h^{\lambda}\otimes \phi_{(2)}\right)(y \otimes x) = \sum \phi_{(1)}h^{\lambda}(y)\phi_{(2)}(x)$$

$$= \phi(h^{\lambda}y \cdot x) = \phi(h^{\lambda}y)_{\lambda}(x).$$

So $I \cdot (S \# H)_I \subseteq I \cdot S_I$. The opposite inclusion is clear.

EXAMPLE 10.3. Let K be a domain of characteristic p. Let $H = K[f_1, ..., f_n]$ with $f_i^p = 0$, f_i commuting and primitive, $\varepsilon(f_i) = 0$ for all i.

Let $L = K[x_1, ..., x_n]$ with $x_i^p = a_i$ in K, acted on by H with f_i acting by $\partial/\partial x_i$. For $R = (r_1, r_2, ..., r_n)$, set

$$x^{R} = x_{1}^{r_{1}} \cdots x_{n}^{r_{n}}, \quad f^{R} = f_{1}^{r_{1}} \cdots f_{n}^{r_{n}},$$

and

$$v^R = x^R/(r_1)! \cdots (r_n)!.$$

Setting $P-1=(p-1,p-1,\ldots,p-1)$, the space of integrals of H is generated by $\theta=f^{P-1}$. Then $\{y^R|0\leqslant r\leqslant p-1\}$ is a K-basis of L, and if $\{\varphi_R\}$ is a dual basis, we have $\varphi_{P-1}=\theta$. Then $\varphi_R(y^S)=\theta(y^{P-1-R}y^S)$, and $\theta\cdot L_I=L^*$. By Theorem 10.1 L is a Galois H-extension of K.

Using Theorem 10.1 we may give a Galois-theoretic proof of a well-known result of Larson and Sweedler [16]. The usual proof (cf. [16, 18, 19, 22], uses a Hopf module approach, which we avoid.

COROLLARY 10.4. $H \cong I \otimes H^*$ as left H-modules, where I is the space of integrals of H and $I \otimes H^*$ is a left H-module via the action of H on H^* given by $(x \cdot f)(y) = f(yx)$.

PROOF. We can assume that the *H*-action on H^* is given by $(x \cdot f)(y) = f(x^{\lambda} \cdot y)$, for the antipode λ : $H^* \to H^*$ induces an isomorphism between $H_1^* = H^*$ with action $(xf)(y) = f(x^{\lambda} \cdot y)$ and $H_2^* = H^*$ with action (xf)(y) = f(yx).

If θ is an integral of H, then

$$\sum_{(\theta)} x^{\lambda} \theta_{(1)} \otimes \theta_{(2)} = \sum_{(\theta)} \theta_{(1)} \otimes x \theta_{(2)}$$

(cf. [22, p. 104]).

Define $\varphi: I \times H^* \to H$ by

$$\langle \varphi(\theta, f), g \rangle = \langle \theta, fg \rangle$$

for f, g in H^* , θ in I. Since H^* is a Galois H^* -object, φ is an isomorphism by Theorem 10.1. Then φ is an H-module isomorphism. For

$$\langle x\varphi(\theta, f), g \rangle = \langle x, g_{(1)} \rangle \langle \varphi(\theta, f), g_{(2)} \rangle = \langle x, g_{(1)} \rangle \langle \theta, fg_{(2)} \rangle$$

$$= \langle x, g_{(1)} \rangle \langle \theta_{(1)}, f \rangle \langle \theta_{(2)}, g_{(2)} \rangle = \langle \theta_{(1)}, f \rangle \langle x\theta_{(2)}, g \rangle$$

$$= \langle x^{\lambda}\theta_{(1)}, f \rangle \langle \theta_{(2)}g \rangle = \langle x^{\lambda}, f_{(1)} \rangle \langle \theta_{(1)}, f_{(2)} \rangle \langle \theta_{(2)}, g \rangle$$

$$= \langle x^{\lambda}, f_{(1)} \rangle \langle \theta, f_{(2)}g \rangle = \langle \theta, \langle f_{(1)}, x^{\lambda} \rangle f_{(2)}g \rangle$$

$$= \langle \theta, (x \cdot f)g \rangle = \langle \varphi(\theta, x \cdot f), g \rangle.$$

So $x\varphi(\theta, f) = \varphi(\theta, x \cdot f)$, completing the proof.

COROLLARY 10.5 (PAREIGIS [19]). As left H-modules, $H^* \cong H$, i.e. H is a Frobenius R-algebra, if and only if I is R-free.

REMARK 10.6. The condition that H is unimodular, i.e. that the spaces of left integrals and right integrals are equal, is obvious if H is commutative. Unimodularity has been studied by Larson and Sweedler [16], who showed that a finite Hopf algebra over a field is unimodular if H has a left integral θ with $\varepsilon(\theta) \neq 0$, which is equivalent to H being semisimple; or if H has an antipode of order 2 and H^* is separable. They give an example of a finite cocommutative Hopf algebra H with H^* connected over a field of characteristic 2 which is not unimodular.

The trivial Galois H^* -object is H^* itself, which is acted upon by H. Theorem 10.1 then specializes, for unimodular H, to the result of Larson and Sweedler [16] that for a finite bialgebra with antipode, the bilinear form β : $H^* \times H^* \to R$, $\beta(p,q) = (pq)\theta$, associated to a generator θ of the space of integrals of H, is nonsingular.

11. Discriminants. We may define a codifferent using the integrals of H.

PROPOSITION 11.1. Let R be a domain with quotient field K, H a finite unimodular Hopf R-algebra with space of integrals I. Let S be a finite R-algebra and an H-extension of R such that $L = S \otimes_R K$ is a Galois $H \otimes_R K$ -extension of K. Let $C = \{x \in L \mid \theta x \in R \text{ for all } \theta \text{ in } I\} \supseteq S$. Then $I \cdot C_l = S^*$. Hence S is a Galois H-extension of S^* if and only if C = S.

PROOF. Both conditions are true if and only if they are true locally, so we may assume R is a local ring and $I = R\theta$ for some θ . Since L is Galois, $I \cdot L_l = L^*$ by Theorem 10.1, and so, viewing θ as in $\operatorname{Hom}_R(S, R) \subseteq \operatorname{Hom}_K(L, K)$, $S^* \subseteq \theta \cdot L_l$, and $S^* = \theta \cdot C_l$, where $C = \{x \text{ in } L | \theta x \in S^*\}$. But

$$S \subseteq C$$

$$\beta|_{S} \searrow \swarrow \beta$$

$$S^*$$

commutes, where $\beta(x)(y) = \theta(xy)$. Since $\beta: C \to S^*$ is an isomorphism, S = C if and only if $\beta|_S$ is an isomorphism, if and only if $I \cdot S_l = S^*$. Theorem 10.1 applies to complete the proof.

To define a discriminant of an *H*-extension *S* of *R*, first assume *R* is local, so that $I = R\theta$ and *S* is a free *R*-module. Let $\{x_1, \ldots, x_n\}$ be a basis of *S* as a free *R*-module.

Define $\delta_H(x_1, \dots, x_n) = \det(\theta(x_i x_i))$.

Let $\{f_1, \ldots, f_n\}$ be a dual basis in S^* to $\{x_1, \ldots, x_n\}$. Let $\{y_1, \ldots, y_n\}$ in C be such that $f_i = \theta \cdot y_i$. Write $y_i = \sum_i a_{ij} x_j$, a_{ij} in K. Then

$$\delta_{ij} = f_i(x_j) = \theta(y_i x_j) = \theta\left(\sum_k a_{ik} x_k x_j\right) = \sum_k a_{ik} \theta(x_k x_j)$$

so $(a_{ik})(\theta(x_k x_i)) = \text{the } n \times n \text{ identity matrix.}$

Thus $(\theta(x_k x_j))$ is invertible if and only if all a_{ik} are in R, if and only if all y_i are in S, if and only if $S^* = \theta \cdot S_i$, if and only if S is a Galois H-object.

Globalizing, we get the following:

DEFINITION 11.2. $\delta_H(S/R)$, the discriminant of S with respect to H, is the ideal of R generated by $\{\det \theta(x_i x_j)\}$ for θ in I and $\{x_1, \ldots, x_n\}$ running through K-bases of L contained in S.

PROPOSITION 11.3. Under the same assumptions as in Proposition 11.1, $\delta_H(S/R) = R$ if and only if S is a Galois H^* -object.

PROOF. Both conditions are true if and only if they are true locally. So we can assume S is a free R-module with basis $\{x_1, \ldots, x_n\}$, and $I = R\theta$, in which case the above argument applies.

REMARKS. 11.4. When H = RG, S is a Galois H-extension of R if and only if S is a Galois extension of R with group G, in the sense of Chase, Harrison, Rosenberg [6]. In that case, H = RG, which is unimodular with space of integrals generated by $\theta = \sum_{\sigma \in G} \sigma = \text{tr}$; $\delta_H(S/R)$ is the classical discriminant. The above results then specialize to the results on pages 92–93 of DeMeyer and Ingraham [10].

EXAMPLE 11.5 (CLASSICAL). Suppose R is a domain with quotient field K, and R contains a primitive nth root of unity ζ ; let S = R[z] with $z^n = b$, and H = RG, G cyclic of order n with generator σ acting on S by $\sigma(z) = \zeta z$. Then $\delta_H(S/R) = \det(\operatorname{tr}(z^i z^j))$. Since

$$\operatorname{tr}(z^r) = \begin{cases} 0, & r \not\equiv 0 \pmod{n}, \\ nz^r, & n \mid r, \end{cases}$$

we have

$$\det(\operatorname{tr}(z^{i}z^{j})) = \det\begin{pmatrix} n & 0 & \cdots & 0 \\ 0 & & & nb \\ \vdots & & \ddots & \\ 0 & nb & & 0 \end{pmatrix} = \pm n^{n}b^{n-1}.$$

Hence S is a Galois H-extension of R, H = RG if and only if n and b are units of R. Of course, $\delta_H(S/R)$ is the classical discriminant.

Note here that if n is a unit of R, then $RG = (RG)^*$. Consider, then,

EXAMPLE 11.6. Same S, but do not assume R contains a primitive nth root of unity. Let $H = (RG)^* = \sum_{k=0}^{n-1} Re_k$, $e_k(\sigma^j) = \delta_{k,j}$. Then $I = Re_0$.

Define H on S by $e_k(z^j) = \delta_{k,j} z^j$. Then

$$\delta_{H}(S/R) = \det(e_{0}(z^{i}z^{j}))$$

$$= \det\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & b \\ \vdots & & \ddots & \\ 0 & b & & 0 \end{pmatrix}$$

$$= +b^{n-1}.$$

Hence S is a Galois H-extension of R for $H = (RG)^*$ if and only if b is a unit of R. See also Chase and Sweedler [7, Example 4.16].

12. The local case. II: A chain of Galois module algebras. The discriminant permits us to construct a chain of Galois module algebras inside the ring of integers of a Kummer extensions of local fields.

Example 12.1. Let R be the completion at some prime lying over l of a finite extension of $Z[\zeta]$, ζ a primitive lth root of unity, l an odd prime. Let p generate the maximal ideal of R, and let $lR = (pR)^{e(l-1)}$. Let H_b be the Tate-Oort Hopf algebra $R[\xi]$, with $\xi^p = b\xi$, and comultiplication

$$\begin{split} \Delta\left(\xi^{i}\right) &= \left(1 \otimes \xi^{i}\right) + \left(\xi^{i} \otimes 1\right) \\ &+ \frac{w_{i}}{1 - l} \left[\sum_{j=1}^{i-1} \frac{\xi^{j}}{\omega_{j}} \otimes \frac{\xi^{i-j}}{\omega_{i-j}} + \sum_{j=i}^{l-1} \frac{a^{\xi^{j}}}{\omega_{j}} \otimes \frac{\xi^{l-1+i-j}}{\omega_{l-1+i-j}}\right] \end{split}$$

where $ab = \omega_I$.

Let K be the quotient field of R, and L = K[z], z' = w, w in R. For $0 \le s \le e$, let S = R[x], $x = (z - 1)/p^s$. Then x satisfies $(1 + p^s z)^l = w$, or

$$x' + {l \choose l-1} \frac{x^{l-1}}{p^s} + \cdots + {l \choose r} \frac{x^r}{p^{(l-r)s}} + \cdots + {l \choose 1} \frac{x}{p^{(l-1)s}} = \frac{w-1}{p^{sl}}.$$

Since $s \le e$, all coefficients of x^r , r > 0, are in R, and x is integral over R if and only if $w \equiv 1 \pmod{p^{sl}}$.

Suppose $w = 1 + p^{sl}c$, c in R.

Let H_b , $b = p^{s(l-1)}$ act on S by $\xi x = 1 + p^s x = z$, $\xi z = p^s z$. Then H_b sends Rx into S. But then, using the measuring property:

$$\xi^{i}(x^{r}x^{s}) = x^{r}(\xi^{i}x^{s}) + (\xi^{i}x^{r})x^{s} + \frac{\omega_{i}}{1 - l} \left[\sum_{j=1}^{i-l} \left(\frac{\xi^{j}x^{r}}{\omega_{j}} \right) \left(\frac{\xi^{i-j}x^{s}}{\omega_{ij}} \right) + \sum_{j=i}^{l-1} a \left(\frac{\xi^{j}x^{r}}{\omega_{j}} \right) \left(\frac{\xi^{l-1+i-j}x^{s}}{\omega_{l-1+i-j}} \right) \right],$$

one sees easily by induction on k that H sends Rx^k into S for all k > 0. Thus H_b acts on S.

Now $RG = H_{p^{e(l-1)}} \subseteq H_b = H_{p^{e(l-1)}} \subseteq H_1 = (RG)^*$; if $l = up^{e(l-1)}$ for some unit u of R, then $\theta = (\sum \sigma)/p^{(e-s)(l-1)}u$ generates the space of integrals of H.

Thus

$$\theta(z^r) = \begin{cases} 0, & l+r, \\ z^r p^{s(l-1)}, & l|r. \end{cases}$$

and so

$$\delta_{H}(1, z, z^{2}, \dots, z^{l-1}) = \det(\theta(z^{i+j}))$$

$$= \det \begin{pmatrix} p^{s(l-1)} & 0 & \cdots & 0 \\ 0 & & & p^{s(l-1)}w \\ \vdots & & & \ddots & \\ 0 & p^{s(l-1)}w & & 0 \end{pmatrix}$$

$$= w^{l-1}p^{sl(l-1)}.$$

Now $z = 1 + p^s x$, so

$$z^r = \sum_{k=0}^r p^{sk} \binom{r}{k} x^k.$$

So

$$\delta_H(1, x, x^2, \dots, x^{l-1}) \det(A)^2 = p^{s/(l-1)} w^{l-1},$$

where

$$A = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & p^{s} & & \ddots \\ 1 & {2 \choose 1} p^{s} p^{2s} & & \vdots \\ & \cdots & & 0 \\ \vdots & & \ddots & p^{(\ell-1)s} \end{pmatrix}.$$

Thus $(\det A)^2 = p^{l(l-1)s}$ and $\delta_H(1, x, x^2, ..., x^{l-1}) = w^{l-1}$, a unit of R. Thus $S = R[x], x = (z-1)/p^s$, is a Galois $H_{p^{s(l-1)}}$ -extension of R.

If L = K[z], z' = w, $w = 1 + p^{ql+r}u$, $0 \le r < 1$, $0 \le q \le e$, $ql + r \ge 1$, u a unit of R, then we get a chain of Galois extensions of R contained in the integral closure S of R in L: $S_0 \subseteq S_1 \subseteq S_2 \subseteq \cdots \subseteq S_q$ where $S_s = R[(z-1)/p^s]$ is a Galois $(H_{p^{s(l-1)}})$ -extension of R. In particular, S_0 is as in Example 11.6, and is the Kummer order \tilde{S} of S arising in Theorem 8.1.

Summarizing, we have shown

THEOREM 12.2. Let K be a local field with valuation ring R, maximal ideal $\mathfrak{p}=pR$ and $l\in\mathfrak{p}$. Let $L\supset K$ be a Kummer extension of degree l, L=K[z], $z^l=w=1+up^k$, u a unit of R, k maximal, k>0, k=ql+r, where $0\leqslant r\leqslant l$ and $0\leqslant r$ if $q\leqslant e$. Let S be the integral closure of R in L. Then there is a chain of Galois extensions of R, $S_0\subsetneq S_1\subsetneq \cdots \subsetneq S_h$, all contained in S, where S_k is a Galois $H_{p^{k(l-1)}}$ -extension of R, $0\leqslant k\leqslant h$, and $h=\min\{q,e\}$.

13. Some lemmas on Kummer extensions of prime order. Throughout this section, let K be a local field, a finite extension of Q_l , with valuation ring R, maximal ideal $\mathfrak{p} = pR$, $lR = \mathfrak{p}^{e(l-1)}$, and L a Kummer extension of K of prime order l.

We wish to show that the chain of Galois extensions described in Theorem 12.2 contains all the Galois extensions of R contained in L. We need a preliminary lemma.

LEMMA 13.1. Let $z^l = 1 + up^{lq+r}$, u a unit of R, where q < e and 0 < r < l. Set $x = (z - 1)/p^q$. Then $v_L(x) = r$.

PROOF. Since $z^{l} = 1 + up^{lq+r}$, x satisfies

$$0 = ((1 + p^{q}x)^{l} - 1 - up^{lq+r})/p^{ql}$$

or

$$(13.2) 0 = x^l + \frac{lp^{q(l-1)}}{p^{ql}}x^{l-1} + \cdots + \binom{l}{k}\frac{p^{qk}x^k}{p^{ql}} + \cdots + \frac{lp^q}{p^{ql}} - up^r.$$

Since q < e, $L \supset K$ is totally ramified, and $v_L(p) = l$. In order that equation (13.2) hold, (13.2) must contain two terms whose valuations are equal and minimal. Now

$$v_I(x^I) = lv_I(x), \quad v_I(up^r) = lr$$

and for $1 \le k \le l - 1$,

$$\begin{split} v_L\bigg(\binom{l}{k}\frac{x^k}{p^{q(l-k)}}\bigg) &= el(l-1) + kv_L(x) - lq(l-k) \\ &\geqslant el(l-1) - l(e-1)(l-1) + kv_L(x) \\ &\geqslant l(l-1) + kv_L(x). \end{split}$$

Thus

$$v_L(up^r) < v_L\left(\binom{l}{k} \frac{x^k}{p^{q(l-k)}}\right)$$

unless r = l - 1 and $v_L(x) = 0$. But then $0 = v_L(x^l)$ and x^l is the unique term in minimal valuation, impossible. So we must have $lv_L(x) = lr$, and $v_L(x) = r$, as claimed.

The following result will help to identify when the ring of integers of L is a Galois extension.

PROPOSITION 13.3. Suppose L = K[z] is totally ramified. Suppose $z^l = 1 + up^{lq+r}$, u a unit, q < e, $2 \le r \le l-1$. Let T = R[x] where $x = (z-1)/p^q$. Then T is not integrally closed.

PROOF. We have

$$\frac{z^l-1}{p^{ql}} = \left(\prod_{\zeta \neq 1} \frac{\zeta z - 1}{p^q}\right) \frac{z-1}{p^q} = up^r.$$

Let

$$y = \frac{1}{p^{r-1}} \prod_{\zeta \neq 1} \frac{\zeta z - 1}{p^q} = \frac{1}{p^{r-1}} \prod_{i=1}^{r-1} \sigma^i(x).$$

Then yx = up, and, using Lemma 13.1, $v_L(y) = l - r \ge 0$, and y is in S, the integral closure of R in L.

However,

$$\begin{split} p^{r-1}y &= \frac{z^l - 1}{p^{ql}} \bigg/ \frac{z - 1}{p^q} = \frac{1 + z + z^2 + \dots + z^{l-1}}{p^{q(l-1)}} \\ &= \frac{1}{p^{q(l-1)}} \sum_{k=0}^{l-1} \left(1 + p^q x \right)^k = \frac{1}{p^{q(l-1)}} \sum_{k=0}^{l-1} \sum_{m=0}^k \binom{k}{m} p^{qm} x^m \\ &= \frac{1}{p^{q(l-1)}} \sum_{m=0}^{l-1} \binom{\sum_{k=m}^{l-1} \binom{k}{m}}{p^{mq} x^m} \\ &= \frac{1}{p^{q(l-1)}} \sum_{m=0}^{l-1} \binom{l}{m+1} p^{mq} x^m. \end{split}$$

So

$$y = \frac{1}{p^{q(l-1)+(r-1)}} \sum_{m=0}^{l-1} {l \choose m+1} p^{mq} x^m.$$

Let c_m be the coefficient of x^m , m = 0, ..., l-1. Since $q(l-1) + r - 1 < e(l-1) = v_K(l)$, c_m is in R for all m = 0, 1, 2, ..., l-2. But

$$c_{l-1} = \frac{p^{(l-1)q}}{p^{(l-1)q+(r-1)}}$$

is not in R if r > 1. So y is not in T = R[x], and T is not integrally closed.

Finally we need to know how we can adjust a generator z of a Kummer extension L = K[z]. We retain the hypothesis of this section.

Recall that $lR = \mathfrak{p}^{e(l-1)}$.

PROPOSITION 13.4. Let $L \supset K$ be a Kummer extension, then $z \in L$ may be chosen so that L = K[z], $z' = w \in R$ and

(i) w generates p, or

(ii)
$$w = 1 + up^k$$
, u a unit of R , $k = lq + r \ge 1$, $0 \le r < l$, and (a) $r \ne 0$ or

(b)
$$q \geqslant e$$
.

If $w = 1 + up^k$ with $k = lq + r \ge 1$, k < le and $r \ne 0$, then k is maximal for all possible z with L = K[z], $z' \in R$.

PROOF. Let L = K[y], $y^l = v$. If $vR = p^t$ and l + t, find s, m with ts = 1 + lm, then $(yp^{-m})^s = z$ satisfies

$$z^{l} = w = (yp^{-m})^{sl} = v^{s}p^{1-ts} = (p^{t}u')^{s}pp^{-ts} = up$$
 for some units u, u' of R .

If $l \mid t$, t = lq, then $(y/p^q)^l$ is a unit of R, so we can assume $y^l = v \notin \mathfrak{p}$. Suppose $v = 1 + up^k$, u a unit of R, for some k > 0. If $l \mid k$, k = lq, let $-u \equiv v_1^l \pmod{\mathfrak{p}}$ (possible since R/\mathfrak{p} is a finite field of characteristic l) and set $c = 1 + v_1 p^q$, and z = cy, then

$$z^{l} = (yc)^{l} = (1 + up^{k})(1 + v_{1}p^{q})^{l}$$
$$= 1 + up^{k} + v_{1}^{l}p^{ql} + v_{1}p^{k+ql} + lv_{2},$$

some $v_2 \in \mathfrak{p}^q$,

$$\equiv \begin{cases} 1 \pmod{\mathfrak{p}^{k+1}} & \text{if } k < le, \\ 1 \pmod{\mathfrak{p}^{el}} & \text{if } k \geqslant le. \end{cases}$$

Repeating this construction as needed, we may eventually find z with $z' = w = 1 + up^k$ with l + k or $k \ge le$. If k = 0 the argument is similar.

To show maximality, first note that given z with L = K[z], $z' \in R$, all other elements of L with $y' \in R$ have the form $y = cz^s$, $c \in R$, $1 \le s \le l - 1$.

Suppose $z^l = w = 1 + up^k$, $k \not\equiv 0 \pmod{l}$, u a unit of R, k < le. For any $c = 1 + vp^d$, v a unit of R, and any s, $1 \le s \le l - 1$, we have

$$(cz^{s})^{l} = (1 + vp^{d})^{l} (1 + up^{k})^{s}$$

= $(1 + v^{l}p^{dl} + lp^{d}u_{0})(1 + u_{1}p^{k}), u_{0}, u_{1} \text{ units.}$

If k < le then

$$(cz^{s})^{l} = 1 + u_{2}p^{n}, u_{2} \text{ a unit},$$

where $n = \min\{k, dl\}$. Hence if $k < le, k \not\equiv 0 \pmod{l}$, then k is maximal.

14. The local case. III: Galois orders in L. Let L = K[z], $z' = w \in R$, be a Kummer extension of local fields, with $l \in \mathfrak{p} = pR$, the maximal ideal of R. In this section we will classify the Galois and tame extensions of R which are orders over R in L.

The case where $l + \nu_{\nu}(w)$ was done in Proposition 8.1. So throughout this section assume w is a unit of R. In view of Proposition 13.4 we may assume $w = 1 + p^k u$, u a unit of R, where k = ql + r, and $1 \le r < l$ or $q \ge e$.

Recall that inside S, the integral closure of R in L, is the chain $S_0 \subseteq S_1 \subseteq \cdots \subseteq S_h$ of Galois extensions of R, where $h = \min\{q, e\}$ (Proposition 12.2).

THEOREM 14.1. Let S be a Galois extension of R which is an order over R in L. Then $S = S_m$ for some $m \le h$.

PROOF. The results of §7 imply that if S is a Galois extension of R such that SK = L, then S is a Galois $H_{p^{m(l-1)}}$ -extension for some $m, 0 \le m \le e$, with induced action from that of KG on L. By the results of [14], S = R[t] with $1 + p^m t = y$ satisfying $y^l = v$ in R, $v \equiv 1 \pmod{p^{ml}}$ a unit of R. Now $S_m = R[x]$ where $1 + p^m x = z$, $z^l = w \in R$. Since K[y] = K[z], $z = cy^r$ some $c \in K$, and $y = dz^s$, some d in K. Since z, y are both units of S, c, d are units of R. Substituting, we have

(14.2)
$$1 + p^m x = c(1 + p^m t)^r \text{ and } 1 + p^m t = d(1 + p^m x)^s;$$

thus $c, d \equiv 1 \pmod{p^m}$. Writing $c = 1 + p^m e, d = 1 + p^m f, e, f \in R$, and substituting into (14.2) yields easily that $x \in R[t], t \in R[x]$, so $S = S_m$.

Now we ask when the integral closure of R in L is a Galois extension. Again assume $l \mid v_k(w)$.

THEOREM 14.3. Let L = K[z], $z^l = w = 1 + p^k u$, k = ql + r, is a unit of R, and $q \ge e$ or $1 \le r < l$. Let S be the integral closure of R in L. If $q \ge e$ then $S = S_e$ is a Galois extension. If q < e, then S is a Galois extension if and only if r = 1, in which case $S = S_a$, a Galois $H_{pq(l-1)}$ -extension.

PROOF. Since $S_h \subset S$ where $h = \min\{e, q\}$, and S_h is the largest Galois extension contained in S, S is a Galois extension if and only if $S = S_h$.

If h = e, S_e is a Galois RG-extension so is integrally closed, and $S_e = S$.

If h=q < e, set $S_q = R[x]$, $1+p^q x = z$, then $\nu_L(x) = r$ by Lemma 13.1. If r>1 then S_q is not integrally closed, hence $S_q \neq S$, by Proposition 13.3. If r=1, then x satisfies the Eisenstein equation

$$\frac{(1+p^{q}X)^{l}-(1+p^{ql+1}u)}{p^{ql}}=0$$

which is in R[X] since $lR = \mathfrak{p}^{e(l-1)}$ and $q \le e$. Thus [21, Chapitre I, Corollaire to Proposition 17], $S_q = R[x] = S$.

15. The local case. IV: The order of S in KG. Assume R is a local ring. Let T be a Galois H_b -extension of R, where \tilde{b} , an (l-1)th root of b, is in R. Then the description of Galois H_b -extensions of R with normal basis given by Hurley [14] applies. Namely, let $H_b = R[\xi]$, $\xi' = b\xi$, then T = R[y] with $\xi y = 1 + \tilde{b}y = z$, $\xi z = \tilde{b}z$, z' = w is a unit of R congruent to 1 modulo \tilde{b}' , and

$$v = \frac{1}{b} \left(1 - \sum_{i=1}^{l-1} z^i \right)$$

generates a normal basis for T over R, in the sense that $\{v, \xi v, \xi^2 v, \dots, \xi^{l-1} v\}$ is a basis for T as a free R-module.

EXAMPLE 15.1. Let l=2, $H=H_{p^q}$, T a Galois H-extension of R. Then T=R[x] where $x=(z-1)/p^q$ satisfies $x^2+(2/b)x=2u$, u in R and $v=x=(1-z)/p^q$ generates a normal basis $\{x, \xi x=z\}$.

Using the existence of the normal basis, we have

PROPOSITION 15.2. Suppose $L \supset K$ is a Kummer extension of local fields of order l with Galois group G, R is the valuation ring of K, l is in \mathfrak{p} , the maximal ideal of R, and S is the integral closure of R in L. Suppose T is a tame H_b -extension contained in S. If $\mathscr{A} = \{ \alpha \in KG | \alpha T \subseteq T \}$, the order of T in KG, then $H_b = \mathscr{A}$.

PROOF. Since $H_b \subseteq KG$, $H_b \subseteq \mathscr{A}$.

First assume b is in \mathfrak{p} , the maximal ideal of R. Suppose α is in \mathscr{A} , $\alpha T \subseteq T$. Since T is a tame H_b -module algebra, where $H_b = R[\xi]$, T is Galois, so T has a basis over

R consisting of $v, \xi v, \xi^2 v, \dots, \xi^{l-1} v$ for some v in T. Let $\alpha = \sum_{i=0}^{l-i} d_i \xi^i$ in $H_b \otimes K = KG$, $d_i \in K$. Then

$$\alpha v = \sum_{i=0}^{l-1} d_i \xi^i v.$$

If αv is in T, then d_i must be in R for all i, and so α is in $R[\xi] = H_b$. Thus in this case, $\mathscr{A} = H_b$.

Now suppose b is not in p. Then $H_b = H_1$ is the integral closure of RG in KG. Since \mathscr{A} is an order over R in KG, $\mathscr{A} \subseteq H_1$.

That completes the proof.

COROLLARY 15.3. Suppose K, R, L are as in (15.2) and S is the integral closure of R in L. Suppose L = K[z], $z^l = w = 1 + p^k u$, $k \ge 1$ maximal, k = ql + r, u a unit of R. If r = 1 or $q \ge e$ then the order $\mathscr A$ of S is a Hopf algebra.

16. The local case. V: Trace, ramification number. Again assume $L \supset K$ is a Kummer extension of local fields of prime order l, let R be the valuation ring of K with maximmal ideal $\mathfrak{p} = pR$, S the integral closure of R in L. Assume L = K[z], $z^l = w$ a unit of R, $w = 1 + p^k u = 1 + p^{ql+r}u$, u a unit of R, $q \ge e$ or $1 \le r < l$. If $q \ge e$ then S is a Galois extension of R with group G, $\operatorname{tr}(S) = R$ and \mathfrak{p} is unramified in S.

Suppose q < e, then $\mathfrak p$ is totally ramified in S. Let $\mathscr P$ be the maximal ideal of S. Set $G_i = \{ \sigma \in G \mid \sigma x \equiv x \pmod{\mathscr P^{i+1}} \text{ for all } x \text{ in } S \}$, the ith ramification group. The ramification number t of L/K is the number t so that $G_t = G$, $G_{t+1} = (1)$.

THEOREM 16.1. With the above notation, suppose L = K[z], z^{l} a unit of R, and suppose L/K is totally ramified. Then the following are equivalent:

- (i) S is a Ga!ois $H_{p^{q(l-1)}}$ -extension,
- (ii) z may be chosen with $z^{l} = 1 + up^{ql+1}$, u a unit of R,
- (iii) t = (e q)l 1,
- (iv) $tr(S) = p^{(e-q)(l-1)}R$.

Note that (i), (iii), (iv) all hold when L/K is unramified (in which case q = e). PROOF. (iii) \Rightarrow (iv). Let t be the ramification number, then

$$v_p(\text{tr}(S)) = [(t+1)(l-1)/l]$$

by [22, Lemma 4, p. 91]. Then (iii) \Rightarrow (iv) is obvious.

- (i) \Leftrightarrow (ii) is Theorem 14.3.
- (i) \Rightarrow (iii). If S is a Galois $H_{p^{q(l-1)}}$ -extension then

$$S = S_q = R[x], \quad x = (z - 1)/p^q.$$

We have

$$\sigma(x) = \sigma\left(\frac{z-1}{p^q}\right) = \frac{\xi z - 1}{p^q} = \frac{z-1}{p^q} + \frac{\xi z - z}{p^q} = x + \frac{x(\xi - 1)}{p^q}$$

so $\sigma(x) - x$ is in $\mathfrak{p}^{e-q} = \mathscr{P}^{l(e-q)}$, and is not in $\mathscr{P}^{l(e-q)+1}$. So t = (e-q)l - 1.

(iv) \Rightarrow (i). Suppose $v_k(\operatorname{tr}(S)) = q(l-1)$, some q. Let t be the ramification number, h=t+1. Then q(l-1)=[h(l-1)/l]. Write $h=cl+r,\ 0\leqslant r< l$. Then

$$q(l-1) = [(cl+r)(l-1)/l]$$
 [22, p. 91]
= $c(l-1) + [r(l-1)/l]$, so $c = q$ and $r = 0$ or 1.

CLAIM. S is an $H_{p^{(e-q)(l-1)}}$ -module algebra.

PROOF OF CLAIM. Let π be a uniformizing parameter for \mathscr{P} , the maximal ideal of S.

If $G = \langle \sigma \rangle$, for any x in S, $\sigma(x) \equiv x \pmod{\pi^h}$, so for each i, $\sigma^i(x) = x + u_i \pi^h$ for some u in S.

Recall that $RG = R[\theta]$, $\theta' = \omega_l \theta$ where

$$\theta = -\sum_{m \in \mathbf{F}^*} \chi^{-1}(m) \sigma^m.$$

Thus

$$\theta(x) = -\sum_{m=1}^{l-1} \chi^{-1}(m) \sigma^{m}(x)$$

$$= -\sum_{m=1}^{l-1} \chi^{-1}(m) x - \sum_{m=1}^{l-1} \chi^{-1}(m) u_{m} \pi^{h}$$

$$= \left(-\sum_{m=1}^{l-1} \chi^{-1}(m) u_{m}\right) \pi^{h}.$$

If h = lq + r, $0 \le r < l$, let $\xi = \theta/p^q$ in KG; then $R[\xi] = H_b$ for $b = \omega_l/p^{q(l-1)}$. For any x in S,

$$\xi(x) = \left(-\sum_{m=1}^{l-1} \chi^{-1}(m) u_m\right) \pi^h / p^q,$$

and $\pi^h/p^q = u_1\pi^r$, an element of S (where u_1 is a unit of S). Thus $H_b = R[\xi]$ maps S to S. Since $H_b = R[\xi] \subseteq KG$ and the action of H_b on S is the restriction of that of KG on L, S is an H_b -module algebra, completing the proof of the claim.

Now the space of integrals of $H_{p^{(e-q)(l-1)}}$ is generated by

$$\phi = b - \xi^{l-1} = \left(\sum_{i=0}^{l-1} \sigma^i\right) / p^{q(l-1)}.$$

So $IS = \phi S = \text{tr}(S)/p^{q(l-1)} = R$. It follows that S is a tame, hence Galois $H_{p^{(q-q)(l-1)}}$ -extension. Thus (iv) \Rightarrow (i), completing the proof of Theorem 16.1.

COROLLARY 16.2 (cf. [3]). Let $L \supset K$ be a Kummer extension of local fields of prime order l. Then l does not divide the ramification number t of L/K.

PROOF. The conclusion is true if S is a Galois H_b -extension for some H_b , by Theorem 16.1. So assume S is not Galois. In that case, $v_k(\text{tr}(S))$ is not a multiple of l-1. So if h=t+1=cl+r, $0 \le r < l$, again by [22, p. 91],

$$v_k(\operatorname{tr}(S)) = [(cl+r)(l-1)/l] = c(l-1) + [r(l-1)/l]$$

is not a multiple of l-1. So $r \ge 2$, and $t \not\equiv -1$ or $0 \pmod{l}$. That completes the proof.

17. Globalization. In this section we obtain global versions of the local results of the previous sections.

Let $L \supset K$ be a Kummer extension of number fields of prime order l with Galois group G and with rings of integers $R = O_K$, $S = O_L$. For each (finite) prime $\mathfrak p$ of K, let $\hat{R}_{\mathfrak p}$, $\hat{K}_{\mathfrak p}$ be the completions at $\mathfrak p$, and let $\hat{S}_{\mathfrak p} = S \otimes_R \hat{R}_{\mathfrak p}$, $L_{\mathfrak p} = L \otimes_K \hat{K}_{\mathfrak p}$. Then $\hat{L}_{\mathfrak p} \supset \hat{K}_{\mathfrak p}$ is a Kummer extension, $\hat{L}_{\mathfrak p} = \hat{K}_{\mathfrak p}[z]$, $z^l \in \hat{K}_{\mathfrak p}$ (even though if p splits completely in S, $\hat{L}_{\mathfrak p}$ will be a direct sum of fields, rather than a field).

PROPOSITION 17.1. Suppose $L \supset K$ are as above, and at each prime $\mathfrak p$ of R, we are given a Tate-Oort Hopf algebra $\hat{H}_{\mathfrak p} \subseteq \hat{K}_{\mathfrak p} G$ and a tame $\hat{H}_{\mathfrak p}$ -extension $\hat{T}_{\mathfrak p}$ of $\hat{R}_{\mathfrak p}$ contained in $\hat{S}_{\mathfrak p}$ such that at all but a finite number of primes $\mathfrak p$, $\hat{T}_{\mathfrak p} = \hat{S}_{\mathfrak p}$. Then there exists a unique Hopf algebra H contained in KG and a tame H-extension T of R contained in S such that $T \otimes_R \hat{R}_{\mathfrak p} = \hat{T}_{\mathfrak p}$ and $H \otimes \hat{R}_{\mathfrak p} = \hat{H}_{\mathfrak p}$.

If we can find unique H_{ν} and T_{ν} over R_{ν} , the localization of R at ν , so that $T_{\nu} \otimes_{R_{\nu}} \hat{R}_{\nu} = \hat{T}_{\nu}$, $H_{\nu} \otimes_{R_{\nu}} \hat{R}_{\nu} = \hat{H}_{\nu}$, such that $T_{\nu} = S_{\nu}$ for all but a finite number of primes, then, since $H_{\nu} = R_{\nu}G$ for all $\nu + l$, $H = \bigcap H_{\nu}$, and $T = \bigcap T_{\nu}$ by standard module theory over Dedekind domains. So (17.1) follows from

PROPOSITION 17.2. Let R be a discrete valuation ring with quotient field K, L a finite extension of K, S the integral closure of R in L. Let \hat{K} be the completion of K with respect to the valuation on R, \hat{R} = valuation ring, $\hat{L} = L \otimes_K \hat{K}$, $\hat{S} = S \otimes_R \hat{R}$. Let T_1 be an order over \hat{R} in \hat{L} . Then there exists a unique order T over R in L with $\hat{T} = T \otimes_R \hat{R} = T_1$.

PROOF. Since T_1 is an order over \hat{R} in \hat{L} , there exists some m so that $p^m \hat{S} \subseteq T_1 \subseteq \hat{S}$. Let $i: L \to \hat{L}$ be the canonical inclusion. Let $T = \{x \in S | i(s) \in T_1\}$. Then $p^m S \subseteq T$. We claim $T_1 = \hat{T}$. We have the following diagram with exact rows:

Since \hat{R} is R-faithfully flat, $\hat{R} \otimes S/T = \hat{S}/\hat{T}$. But then

$$\hat{S}/\hat{T} = \hat{R} \otimes_R (S/T) = (\hat{R}/p^m \hat{R}) \otimes_R (S/T) = (R/p^m R) \otimes_R (S/T)$$
$$= R \otimes_R (S/T) = S/T.$$

Now $\hat{T} \subseteq T_1$, so $S/T = \hat{S}/\hat{T} \to \hat{S}/T_1$ is surjective, but by definition of $T_1 S/T \to \hat{S}/T_1$ is injective. Thus $\hat{S}/T_1 \cong S/T \cong \hat{S}/\hat{T}$, and $T_1 = \hat{T}$.

To show T is unique with $\hat{T} = T_1$, suppose T' has $\hat{T}' = T_1$. Then $T' \subseteq T$, and $\hat{R} \otimes_R T' = \hat{T}' = T_1 = \hat{T} = \hat{R} \otimes T$. By faithful flatness of \hat{R} , T' = T.

Using 17.1, the globalizations of the local results for Kummer extensions of the previous three sections are immediate. The globalization of the trace criterion of Theorem 16.1 for \mathcal{O}_L is the converse of Theorem 6.1:

THEOREM 17.3. Let $L \supset K$ be a Kummer extension of prime order l of number fields. Let $\mathscr{W} = \mathrm{Tr}(O_L)$. Then the order \mathscr{A} of O_L is a Hopf algebra and O_L is a tame \mathscr{A} -extension if and only if \mathscr{W} is the (l-1)th power of an ideal of O_K . If so, $\mathscr{A} = H_{\mathscr{B}}$ where $\mathscr{B}\mathscr{W} = lO_K$.

Here is the global version of the congruence criterion 14.2:

THEOREM 17.4. Let L = K[z], $z' = w \in K$ be a Kummer extension of prime order of number fields, with Galois group G. Then the order \mathscr{A} of O_L in KG is a Hopf algebra and O_L is a tame \mathscr{A} -extension if and only if for each prime p of O_K dividing lO_K ,

- (a) I does not divide $v_n(w)$, or
- (b) l divides $v_p(w)$ and there is some c in K so that $v_p(c^lw-1) \ge lv_p(l)$ or $v_p(c^lw-1) \equiv 1 \pmod{l}$.
- If (a) holds for all primes $\mathfrak p$ of O_K dividing lO_K , then $\mathscr A=(O_KG)^*$. If (b) holds for some $\mathfrak p$ dividing lO_K , then $\mathscr A=H_{\mathscr B}$ where for each prime $\mathfrak p$ of O_K dividing lO_K , choosing $c\in K$ so that $v_{\mathfrak p}(c^lw-1)\geqslant le$ or $\equiv 1\pmod{l}$, we have

If
$$\nu_{\rm p}(c^l w - 1) \ge le$$
, then $\nu_{\rm p}(\mathcal{B}) = 0$,

If
$$\nu_{v}(c^{l}w - 1) = k$$
, $0 < k < le$, then $\nu_{v}(\mathcal{B}) = (k - 1)(l - 1)/l$.

We may also give a complete classification of Galois extensions inside O_L , globalizing Theorem 14.1:

THEOREM 17.5. Let L = K[z], $z' = w \in K$ be a Kummer extension of prime order l of number fields. The set Gal(L/K) of Galois extensions of O_K contained in O_L is as follows:

- (a) if for some prime \mathfrak{p} of O_K , $l + v_{\mathfrak{p}}(w)$, then Gal(L/K) is empty.
- (b) if for all primes \mathfrak{p} of O_K , $l|\nu_{\mathfrak{p}}(w)$, then the set $\mathrm{Gal}(L/K)$ is in 1-1 lattice-inverting correspondence with the ideals of O_K which are (l-1)th powers and which contain $(lO_K)(\mathrm{tr}(O_L))^{-1}$.

PROOF. An order $S \subseteq O_L$ over O_K in L is a Galois $H_{\mathscr{F}}$ extension if and only if $S_{\mathfrak{p}}$ is a Galois $H_{\mathscr{F}}$ -extension for each prime \mathfrak{p} of O_K . If l does not divide $v_{\mathfrak{p}}(w)$ for some prime \mathfrak{p} , then there are no Galois extension of $O_{K,\mathfrak{p}}$ contained in L by Corollary 8.2, hence (a) holds.

Suppose that l divides $v_p(w)$ for all primes $\mathfrak p$ of O_K . If $\mathfrak p$ is a prime which does not divide lO_K , then $O_{L,\mathfrak p}$ itself is a Galois $H_{1,\mathfrak p}$ -extension of $O_{k,\mathfrak p}$ and is unique. If $\mathfrak p$ divides lO_K we have a chain $S_0 \subset S_1 \subset \cdots \subset S_h \subseteq O_{L,\mathfrak p}$ where S_k is a Galois $H_{p^{k(l-1)}}$ -extension of $O_{K,\mathfrak p}$. Set $L=K[z], z^l=1+up^k$ where $k\geqslant le$ or u is a unit in $O_{K,\mathfrak p}$ and l does not divide k. If $k\geqslant le$ then h=e and $\operatorname{tr}(O_{L,\mathfrak p})=O_{K,\mathfrak p}$. If k< le, k=ql+r, 0< r< l, then h=q.

Thus the set of Galois extensions of O_K contained in L is in 1-1 correspondence with ideals ℓ so that at $\mathfrak p$ not dividing lO_K , $\ell_{\mathfrak p}=(1)$ and at $\mathfrak p$ dividing lO_K , $\ell_{\mathfrak p}=\mathfrak p^{k(l-1)}$ for $0\leqslant k\leqslant h$. Since $S_h\subseteq O_{L,\mathfrak p}$, $\operatorname{tr}(S_k)\subseteq\operatorname{tr}(O_{L,\mathfrak p})$ for all $k\leqslant h$. But $\operatorname{tr}(S_h)=\mathfrak p^{(e-h)(l-1)}\phi(S_h)$ where ϕ generates the space of integrals of $H_{p^{h(l-1)}}$; since S_h is a Galois $H_{p^{h(l-1)}}$ -extension, $\phi(S_h)=O_{K,\mathfrak p}$. Thus

$$\operatorname{tr}(S_h) = p^{(e-h)(l-1)} \subseteq \operatorname{tr}(O_{L,v})$$

and so

$$(lO_K)(\operatorname{tr}(O_{L,\mathfrak{v}}))^{-1} \subseteq \mathfrak{p}^{h(l-1)} \subseteq \mathfrak{p}^{k(l-1)}$$

for all $k, 0 \le k \le h$. That completes the proof.

Note that (b) holds if and only if the Kummer order \tilde{O}_L of O_L is a Galois H_1 -extension of O_K . Then \tilde{O}_L corresponds to the unit ideal, and is contained in all other Galois extensions inside O_L . This observation allows determination of an upper bound on the number of Galois extensions of rank l of O_K :

COROLLARY 17.6. Let K be a number field containing ζ , a primitive Ith root of unity, I prime, and suppose $IO_K = (\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_g^{e_K})^{l-1}$ is the factorization of $IO_K = (1-\zeta)^{l-1}O_K$ into a product of prime ideals. Then the number of Galois extensions S of O_K of rank I such that $S \otimes_{O_K} K$ is a Galois extension of K with group G, cyclic of order I, is at most

$$\left| U(O_K)/U(O_K)^t \right| \cdot \left| \operatorname{Cl}_t(O_K) \right| \cdot \prod_{i=1}^g (e_i + 1).$$

PROOF. The first two factors represent the number of Galois H_1 -extensions of O_K . This follows from the exact sequence

$$1 \to NB(O_K, H_1) \to Gal(O_K, H_1) \to Prim Pic(H_1) \to 1$$

given by the Picard invariant map [26], where $Gal(O_K, H_1)$ is the group of Galois H_1 -extensions, $NB(O_K, H_1)$ is the subgroup of Galois H_1 -extensions with normal basis, and Prim $Pic(H_1)$ is the subgroup of primitive elements of $Pic(H_1)$, the group of rank one projective H_1 -modules. Now $NB(O_K, H_1) \cong U(O_K)/U(O_K)^l$ by [14], and $Prim Pic(H_1) \cong Cl_l(O_K)$ the l-torsion subgroup of the class group of O_K , essentially by [7, Example 4.16]. The third factor is the number of ideals containing lO_K which are (l-1)th powers: this factor is an upper bound for the number of Galois extensions of O_K contained in any Galois extension of K with group G of order I, by Theorem 17.5.

COROLLARY 17.7. Let $K = Q(\sqrt{p})$, p a prime $\equiv 3 \pmod{4}$. Then K has at most 12 Galois extensions of rank 2.

For $U(O_R)/U(O_K)^2$ has order 4, $Pic(O_K)$ has odd order, $2O_K$ is the square of a prime ideal, and for any Galois extension S of rank 2, $S \otimes K$ is a Galois extension of K with group G of order 2.

In fact, by genus theory, $Gal(O_K, H_2) = Gal(O_K, O_KG)$ has order 2, so the bound of 12 is not best possible: we suspect the correct number is 8.

Corollary 17.7 may be used to show the existence of many Azumaya O_K -algebras which are not crossed products for large p: see [31].

In Corollary 17.6 the hypothesis that $S \otimes K$ be a KG-Galois extension of K is necessary. For example, if l = 3, there exist nonnormal cubic field extensions of K and any such is a Galois H-extension for some rank 3 Hopf K-algebra $H \neq KG$: see Theorem 4.6 of [27].

REMARK 17.8. It is a straightforward matter to classify the set $\mathcal{F}(O_L/O_K)$ of tame extensions of O_K contained in O_L :

$$\mathcal{T}\big(O_L/O_K\big) = \prod_{\mathfrak{p}} ' \mathcal{T}\big(O_{L,\mathfrak{p}}/O_{K,\mathfrak{p}}\big)$$

where Π' mean the elements of the direct product over all primes p of O_K such that at all but a finite number of primes p, $S_p = O_{L,p}$. Here $\mathcal{F}(O_{L,v}/O_{K,v})$ is the union of the Galois extensions of $O_{K,p}$ contained in $O_{L,p}$, described in Theorem 14.1, and the non-Galois, tame H_1 -extensions, which are described in Theorem 8.1.

18. A cubic example. By way of illustrating the trace condition of Theorem 17.3, we consider $K = Q(\zeta)$, $\zeta = (-1 + \sqrt{-3})/2$, a cube root of unity. H. Wada [25] has determined relative integral bases for the rings of integers O_L of L = K[z], $z^3 = w$.

Write $w = st^2$, where s, t are cube-free elements of O_K , with s, t both $\not\equiv -1 \pmod{\sqrt{-3}}$. Then Wada considers three cases.

(i) If $s \not\equiv t \pmod{3}$, then 1, z, z^2/t is an O_K -basis of O_L .

In this case $tr(O_L) = 3O_K$; since the only prime ideal \mathfrak{p} of O_K containing l = 3 is $\mathfrak{p} = \sqrt{-3} O_K$, $v_{\mathfrak{p}}(tr(O_L)) = 2$. So O_L is a tame $(O_K G)^*$ -extension of O_K .

- (ii) If $s \equiv t \pmod{3\sqrt{-3}}$, then s and t are relatively prime to 3, for otherwise $\sqrt{-3}$ divides t or s, hence both, and $3\sqrt{-3} = \sqrt{-3}^3$ would divide w, contrary to the assumption that w is cube-free. In this case, O_L has an O_K -basis consisting of 1, $(1-z)/\sqrt{-3}$, and $((s+z+z^2)/t)/3$. Then $\operatorname{tr}(O_L)$ is generated by $3, -3/\sqrt{-3} = \sqrt{-3}$ and s, so $\operatorname{tr}(O_L) = O_K$. Thus O_L is a tame O_KG -extension of O_K (that is, tame in the classical sense [11]).
- (iii) If $s \equiv t \pmod{3}$, $s \not\equiv t \pmod{3\sqrt{-3}}$, then Wada shows that O_L has an O_K -basis 1, z, $((1+z+z^2)/t)/\sqrt{-3}$ and $\operatorname{tr}(O_L) = \sqrt{-3} O_K$. Thus $v_{\mathfrak{p}}(\operatorname{tr}(O_L)) = 1$ is not divisible by 3-1=2, so by Theorem 6.1 the order \mathscr{A} of O_L in KG is not a Hopf algebra.

This last fact can be seen directly:

Locally at (3), hence globally, the only Hopf algebras of order 3 contained in KG are H_{-3} and H_1 by Corollary 7.2. Since

$$\alpha = \frac{1}{\sqrt{-3}} \operatorname{tr} = \frac{1}{\sqrt{-3}} (1 + \sigma + \sigma^2)$$

has $\alpha O_L = O_L$, the order \mathscr{A} of O_L in KG contains α but not

$$-\alpha/\sqrt{-3} = (1 + \sigma + \sigma^2)/3.$$

Thus \mathscr{A} lies properly between $H_{-3} = O_K G$ and $H_1 = (O_K G)^*$, and so is not a Hopf algebra.

REFERENCES

- 1. A.-M. Bergé, Arithmétique d'une extension Galoisienne a groupe d'inertie cyclique, Ann. Inst. Fourier (Grenoble) 28 (1978), 17-44.
- 2. F. Bertrandias, Decomposition du Galois-module des entiers d'une extension cyclique de degre premier d'un corps de nombres ou d'un corps local, Ann. Inst. Fourier (Grenoble) 29 (1979), 33-48.
- 3. F. Bertrandias and M. J. Ferton, Sur l'anneau des entiers d'une extension cyclique de degre premier d'un corps local, C. R. Acad. Sci. Paris A 274 (1972), 1330-1333.

- 4. F. Bertrandias, J.-P. Bertrandias and M. J. Ferton, Sur l'anneau des entiers d'une extension cyclique de degre premier d'un corps local, C. R. Acad. Sci. Paris A 274 (1972), 1388-1391.
 - 5. N. Bourbaki, Algèbre commutative, Chapitre II, Hermann, Paris, 1961.
- 6. S. U. Chase, D. K. Harrison and A. Rosenberg, *Galois theory and Galois cohomology of commutative rings*, Mem. Amer. Math. Soc. No. 52, 1965, pp. 15–33.
- 7. S. U. Chase and M. E. Sweedler, *Hopf algebras and Galois theory*, Lecture Notes in Math., vol. 97 Springer, 1969.
- 8. L. N. Childs, Representing classes in the Brauer group of quadratic number rings as smash products, Pacific J. Math. (to appear).
- 9. L. N. Childs and S. Hurley, Tameness and local normal bases for objects of finite Hopf algebras, Trans. Amer. Math. Soc. 298 (1986), 763-778.
- 10. F. DeMeyer and E. Ingraham, Separable Algebras Over Commutative Rings, Lecture Notes in Math., vol. 181, Springer, 1971.
- 11. A. Frohlich, *Local fields*, Algebraic Number Theory, (J. W. S. Cassels and A. Frohlich, eds.), Thompson, Washington, D. C., 1967.
- 12. _____, The module structure of Kummer extensions over Dedekind domains, J. Reine Angew. Math. **209** (1962), 39-53.
 - 13. S. Hurley, Tame and Galois Hopf algebras with normal bases, Thesis, SUNY at Albany, 1984.
- 14. _____, Galois objects with normal bases for free Hopf algebras of prime degree, J. Algebra (to appear).
- 15. H. Jacobinski, Über die Hauptordnung eines Korpers als Gruppenmodul, J. Reine Angew. Math. 213 (1964), 151–164.
- 16. R. Larson and M. Sweedler, An associative orthogonal bilinear form for Hopf algebra, Amer. J. Math. 91 (1969), 75–94.
- 17. H. W. Leopoldt, Über die Hauptordnung der ganzen Elementen eines abelschen Zahlkorpers, J. Reine Angew. Math. **201** (1959), 119–149.
 - 18. T. Ligon, Galois-Theorie in monoidalen Kategorien, Algebra Ber. 35 (1978).
 - 19. B. Pareigis, When Hopf algebras are Frobenius algebras, J. Algebra 18 (1971), 588-596.
 - 20. P. Ribenboim, Algebraic numbers, Wiley-Interscience, New York, 1972.
 - 21. J.-P. Serre, Corps locaux, Hermann, Paris, 1962.
 - 22. M. E. Sweedler, Hopf algebras, Benjamin, New York, 1969.
 - 23. J. Tate and F. Oort, Group schemes of prime order, Ann. Sci. Ecole Norm. Sup. (4) 3 (1970), 1–21.
- 24. M. Taylor, Relative Galois module structure of rings of integers and elliptic functions. II, Ann. of Math. 121 (1985), 519-535.
 - 25. H. Wada, On cubic Galois extensions of $Q(\sqrt{-3})$, Proc. Japan Acad. 46 (1970), 397–400.
- 26. L. Childs and A. Magid, *The Picard invariant of a principal homogeneous space*, J. Pure Appl. Algebra 4 (1974), 273-286.
- 27. C. Greither and B. Pareigis, *Hopf Galois theory for separable field extensions*, J. Algebra **106** (1987), 239–258.
- 28. M. Taylor, *Hopf structure and the Kummer theory of formal groups*, J. Reine Angew. Math. 375 / 376 (1987), 1-11.
- 29. G. Bergman, Everybody knows what a Hopf algebra is, Contemp. Math., vol. 43, Amer. Math. Soc., Providence, R. I., 1985, pp. 25–48.
 - 30. R. G. Larson, Group rings over Dedekind domains, J. Algebra 5 (1967), 358-361.
- 31. L. N. Childs, Azumaya algebras which are not smash products, Rocky Mountain J. Math. (to appear).

DEPARTMENT OF MATHEMATICS AND STATISTICS, STATE UNIVERSITY OF NEW YORK AT ALBANY, ALBANY, NEW YORK 12222